Algorithms: Elementary Graph Algorithms
(BFS, DFS, TOPOLOGICAL SORT)

Ola Svensson

=PFL School of Computer and Communication Sciences

Lecture 14, 08.04.2025

A graph G = (V, E) consists of
> a vertex set V
> an edge set E that contain (ordered) pairs of vertices

A graph can be undirected, directed, vertex-weighted, edge-weighted, etc.

Undirected Graph Directed Graph

How to represent a graph in the computer?

Lecture 14, 08.04.2025

Adjacency Lists

> Array Adj of |V/| lists, one per vertex

> Vertex u's list has all vertices v such that (u, v) € E (works for both
undirected and directed graphs)

Undirected Graph Adjacency list Adj

Lecture 14, 08.04.2025

Adjacency Lists

> Array Adj of |V/| lists, one per vertex

> Vertex u's list has all vertices v such that (u, v) € E (works for both
undirected and directed graphs)

Directed Graph Adjacency list Adj

Lecture 14, 08.04.2025

Adjacency Lists

> Array Adj of |V/| lists, one per vertex

> Vertex u's list has all vertices v such that (u, v) € E (works for both
undirected and directed graphs)

> In pseudocode, we will denote the array as attribute G.Adj, so we
will see notation such as G.Adj[u].

Directed Graph Adjacency list Adj

Lecture 14, 08.04.2025

Adjacency matrix

> A |V| x |V| matrix A= (a;;) where

2y — {1 if(i,j) € E

0 otherwise

Undirected Graph Adjacency matrix
1 2 3 45
1{o 1001
21101 1 1
3/0 1 01 0
410 1 1 0 1
5/1 1.0 1 0

Lecture 14, 08.04.2025

Adjacency matrix

> A |V| x |V| matrix A= (a;;) where

2y — {1 if(i,j) € E

0 otherwise

Directed Graph Adjacency matrix
123456
1{fo1 0100
20000010
30000 11
4/0 1000 0
s5[looo0o 100
6(0 00001

Lecture 14, 08.04.2025

Comparison of adjacency list and adjacency matrix

Adjacency list Adjacency matrix

Space = O(V + E) Space = ©(V?)

Time: to list all vertices adjacent Time: to list all vertices adjacent
to u: ©(degree(u)) to u: ©(V)

Time: to determine whether Time: to determine whether
(u,v) € E: O(degree(u)) (u,v) € E: ©(1)

We can extend both representations to include other attributes such as
edge weights

Lecture 14, 08.04.2025

TRAVERSING/SEARCHING A GRAPH

Lecture 14, 08.04.2025

Breadth-First Search

Definition

INPUT: Graph G = (V/, E), either directed or undirected and
source vertex s € V

OUTPUT: v.d = distance (smallest number of edges) from s to v,
forallveV

Lecture 14, 08.04.2025

Breadth-First Search

Definition

INPUT: Graph G = (V/, E), either directed or undirected and
source vertex s € V

OUTPUT: v.d = distance (smallest number of edges) from s to v,
forallveV

Idea:
> Send a wave out from s
> First hits all vertices 1 edge from s

> From there, hits all vertices 2 edges from s ...

Lecture 14, 08.04.2025

Example of Breadth-first search

Queue Q = s

Lecture 14, 08.04.2025

Example of Breadth-first search

Queue Q = a,c

Lecture 14, 08.04.2025

Example of Breadth-first search

Queue Q = ¢, d

Lecture 14, 08.04.2025

Example of Breadth-first search

Queue Q = d,f

Lecture 14, 08.04.2025

Example of Breadth-first search

Queue Q = f,b

Lecture 14, 08.04.2025

Example of Breadth-first search

Queue Q = b,e,g,h

Lecture 14, 08.04.2025

Example of Breadth-first search

Queue Q = e,g,h

Lecture 14, 08.04.2025

Example of Breadth-first search

Queue Q = g,h

Lecture 14, 08.04.2025

Example of Breadth-first search

Queue Q = h

Lecture 14, 08.04.2025

Example of Breadth-first search

Queue Q = nil

Lecture 14, 08.04.2025

BFS(V, E.s)
Pseudocode of Breadth-first search [Ratsibtead
s.d=0

0=490
ENQUEUE(Q, 5)
while Q # 0
u = DEQUEUE(Q)
for each v € G.Adj[u]
if v.d == 00
vd =u.d+1
ENQUEUE(Q, v)

Lecture 14, 08.04.2025

BFS(V, E.s)
Pseudocode of Breadth-first search [Ratsibtead
s.d=0

0=490
ENQUEUE(Q, 5)
while Q # 0
u = DEQUEUE(Q)
for each v € G.Adj[u]
if v.d == 00
vd =u.d+1
ENQUEUE(Q, v)

Queue Q = a,c

Lecture 14, 08.04.2025

BFS(V, E.s)
Pseudocode of Breadth-first search [Ratsibtead
s.d=0

0=490
ENQUEUE(Q, 5)
while Q # 0
u = DEQUEUE(Q)
for each v € G.Adj[u]
if v.d == 00
vd =u.d+1
ENQUEUE(Q, v)

Queue Q = ¢, d

Lecture 14, 08.04.2025

BFS(V, E.s)
Pseudocode of Breadth-first search [Ratsibtead
s.d=0

0=490
ENQUEUE(Q, 5)
while Q # 0
u = DEQUEUE(Q)
for each v € G.Adj[u]
if v.d == 00
vd =u.d+1
ENQUEUE(Q, v)

Queue Q =d,f

Lecture 14, 08.04.2025

BFS(V, E.s)
Pseudocode of Breadth-first search [Ratsibtead
s.d=0

0=490
ENQUEUE(Q, 5)
while Q # 0
u = DEQUEUE(Q)
for each v € G.Adj[u]
if v.d == 00
vd =u.d+1
ENQUEUE(Q, v)

Queue Q = f,b

Lecture 14, 08.04.2025

BFS(V, E.s)
Pseudocode of Breadth-first search [Ratsibtead
s.d=0

0=490
ENQUEUE(Q, 5)
while Q # 0
u = DEQUEUE(Q)
for each v € G.Adj[u]
if v.d == 00
vd =u.d+1
ENQUEUE(Q, v)

Queue Q = b,e,g,h

Lecture 14, 08.04.2025

BFS(V, E.s)
Pseudocode of Breadth-first search [Ratsibtead
s.d=0

Q=90
ENQUEUE(Q, 5)
while Q # 0
u = DEQUEUE(Q)
for each v € G.Adj[u]
if v.d == 00
vd =u.d+1
ENQUEUE(Q, v)

Queue Q = e,g,h

Lecture 14, 08.04.2025

BFS(V, E.s)
Pseudocode of Breadth-first search [Ratsibtead
s.d=0

Q=90
ENQUEUE(Q, 5)
while Q # 0
u = DEQUEUE(Q)
for each v € G.Adj[u]
if v.d == 00
vd =u.d+1
ENQUEUE(Q, v)

Queue Q = g,h

Lecture 14, 08.04.2025

BFS(V, E.s)
Pseudocode of Breadth-first search [Ratsibtead
s.d=0

Q=90
ENQUEUE(Q, 5)
while Q # 0
u = DEQUEUE(Q)
for each v € G.Adj[u]
if v.d == 00
vd =u.d+1
ENQUEUE(Q, v)

Queue Q = h

Lecture 14, 08.04.2025

BFS(V, E.s)
Pseudocode of Breadth-first search [Ratsibtead
s.d=0

Q=90
ENQUEUE(Q, 5)
while Q # 0
u = DEQUEUE(Q)
for each v € G.Adj[u]
if v.d == 00
vd =u.d+1
ENQUEUE(Q, v)

Queue Q = nil

Lecture 14, 08.04.2025

Informal Idea of correctness (formal proof in book):

Lecture 14, 08.04.2025

Informal Idea of correctness (formal proof in book):
> Suppose that v.d is greater than the shortest distance from s to v

> but since algorithm repeatedly considers the vertices closest to the
root (by adding them to the queue) this cannot happen

Lecture 14, 08.04.2025

Informal Idea of correctness (formal proof in book):
> Suppose that v.d is greater than the shortest distance from s to v

> but since algorithm repeatedly considers the vertices closest to the
root (by adding them to the queue) this cannot happen

Runtime analysis:

Lecture 14, 08.04.2025

Informal Idea of correctness (formal proof in book):
> Suppose that v.d is greater than the shortest distance from s to v

> but since algorithm repeatedly considers the vertices closest to the
root (by adding them to the queue) this cannot happen

Runtime analysis: O(V+E)

Lecture 14, 08.04.2025

Informal Idea of correctness (formal proof in book):
> Suppose that v.d is greater than the shortest distance from s to v

> but since algorithm repeatedly considers the vertices closest to the
root (by adding them to the queue) this cannot happen

Runtime analysis: O(V+E)

> O(V) because each vertex enqueued at most once

Lecture 14, 08.04.2025

Informal Idea of correctness (formal proof in book):
> Suppose that v.d is greater than the shortest distance from s to v

> but since algorithm repeatedly considers the vertices closest to the
root (by adding them to the queue) this cannot happen

Runtime analysis: O(V+E)
» O(V) because each vertex enqueued at most once

» O(E) because every vertex dequeued at most once and we examine
(u, v) only when u is dequeued. Therefore, every edge examined at
most once if directed and at most twice if undirected

Final notes on BFS

» BFS may not reach all the vertices

> We can save the shortest path tree by keeping track of the edge
that discovered the vertex

Lecture 14, 08.04.2025

Final notes on BFS

» BFS may not reach all the vertices

> We can save the shortest path tree by keeping track of the edge
that discovered the vertex

Lecture 14, 08.04.2025

Final notes on BFS

» BFS may not reach all the vertices

> We can save the shortest path tree by keeping track of the edge
that discovered the vertex

Queue Q = ¢, d

Lecture 14, 08.04.2025

Final notes on BFS

» BFS may not reach all the vertices

> We can save the shortest path tree by keeping track of the edge
that discovered the vertex

Queue Q = d,f

Lecture 14, 08.04.2025

Final notes on BFS

» BFS may not reach all the vertices

> We can save the shortest path tree by keeping track of the edge
that discovered the vertex

Queue Q = f,b

Lecture 14, 08.04.2025

Final notes on BFS

> BFS may not reach all the vertices

> We can save the shortest path tree by keeping track of the edge
that discovered the vertex

Queue Q = b,e,g,h

Lecture 14, 08.04.2025

Final notes on BFS

> BFS may not reach all the vertices

> We can save the shortest path tree by keeping track of the edge
that discovered the vertex

Queue Q = e,g,h

Lecture 14, 08.04.2025

Final notes on BFS

> BFS may not reach all the vertices

> We can save the shortest path tree by keeping track of the edge
that discovered the vertex

Queue Q = g,h

Lecture 14, 08.04.2025

Final notes on BFS

» BFS may not reach all the vertices

> We can save the shortest path tree by keeping track of the edge
that discovered the vertex

Queue Q = h

Lecture 14, 08.04.2025

Final notes on BFS

» BFS may not reach all the vertices

> We can save the shortest path tree by keeping track of the edge
that discovered the vertex

Queue Q = nil

Lecture 14, 08.04.2025

Depth-First Search

Definition
INPUT: Graph G = (V, E), either directed or undirected

OUTPUT: 2 timestamps on each vertex: v.d = discovery time and
v.f = finishing time

Lecture 14, 08.04.2025

Depth-First Search

Definition

INPUT: Graph G = (V, E), either directed or undirected

OUTPUT: 2 timestamps on each vertex: v.d = discovery time and
v.f = finishing time

Idea:
> Methodically explore every edge
> Start over from different vertices as necessary

> As soon as we discover a vertex explore from it,

> Unlike BFS, which explores vertices that are close to a source
first

Lecture 14, 08.04.2025

Example of DFS

As DFS progresses, every vertex has a color:
» WHITE = undiscovered
> GRAY = discovered, but not finished (not done exploring from it)

» BLACK = finished (have found everything reachable from it)

1/—

(=

Lecture 14, 08.04.2025

Example of DFS

As DFS progresses, every vertex has a color:
» WHITE = undiscovered
> GRAY = discovered, but not finished (not done exploring from it)

» BLACK = finished (have found everything reachable from it)

1/—

(=

Lecture 14, 08.04.2025

Example of DFS

As DFS progresses, every vertex has a color:
» WHITE = undiscovered
> GRAY = discovered, but not finished (not done exploring from it)

» BLACK = finished (have found everything reachable from it)

1/—

(=

time = 3

Lecture 14, 08.04.2025

Example of DFS

As DFS progresses, every vertex has a color:
» WHITE = undiscovered
> GRAY = discovered, but not finished (not done exploring from it)

» BLACK = finished (have found everything reachable from it)

1/—

(=

Lecture 14, 08.04.2025

Example of DFS

As DFS progresses, every vertex has a color:
» WHITE = undiscovered
> GRAY = discovered, but not finished (not done exploring from it)

» BLACK = finished (have found everything reachable from it)

1/—

(=

Lecture 14, 08.04.2025

Example of DFS

As DFS progresses, every vertex has a color:
» WHITE = undiscovered
> GRAY = discovered, but not finished (not done exploring from it)

» BLACK = finished (have found everything reachable from it)

- /-
c

3/4 56 —/-

Lecture 14, 08.04.2025

Example of DFS

As DFS progresses, every vertex has a color:
» WHITE = undiscovered
> GRAY = discovered, but not finished (not done exploring from it)

» BLACK = finished (have found everything reachable from it)

- /-
c

3/4 56 —/-

Lecture 14, 08.04.2025

Example of DFS

As DFS progresses, every vertex has a color:
» WHITE = undiscovered
> GRAY = discovered, but not finished (not done exploring from it)

» BLACK = finished (have found everything reachable from it)

Lecture 14, 08.04.2025

Example of DFS

As DFS progresses, every vertex has a color:
» WHITE = undiscovered
> GRAY = discovered, but not finished (not done exploring from it)

» BLACK = finished (have found everything reachable from it)

Lecture 14, 08.04.2025

Example of DFS

As DFS progresses, every vertex has a color:
» WHITE = undiscovered
> GRAY = discovered, but not finished (not done exploring from it)

» BLACK = finished (have found everything reachable from it)

1/— 8/— /=
b / f?/ S /
2/7
9/10
f
3/4 5/6 —/-
time = 10

Lecture 14, 08.04.2025

Example of DFS

As DFS progresses, every vertex has a color:
» WHITE = undiscovered
> GRAY = discovered, but not finished (not done exploring from it)

» BLACK = finished (have found everything reachable from it)

1/— 8/11 —/—
b e
2/7
9/10
f
3/4 5/6 —/-
time = 11

Lecture 14, 08.04.2025

Example of DFS

As DFS progresses, every vertex has a color:
» WHITE = undiscovered
> GRAY = discovered, but not finished (not done exploring from it)

» BLACK = finished (have found everything reachable from it)

1/12 8/11 —/—

2/7
9/10

3/4 5/6 —/-

time = 12

Lecture 14, 08.04.2025

Example of DFS

As DFS progresses, every vertex has a color:
» WHITE = undiscovered
> GRAY = discovered, but not finished (not done exploring from it)

» BLACK = finished (have found everything reachable from it)

1/12 8/11 13/—

2/7
9/10

3/4 5/6 —/-

time = 13

Lecture 14, 08.04.2025

Example of DFS

As DFS progresses, every vertex has a color:
» WHITE = undiscovered
> GRAY = discovered, but not finished (not done exploring from it)

» BLACK = finished (have found everything reachable from it)

1/12 8/11 13/—

2/7
9/10

3/4 5/6 14/—

time = 14

Lecture 14, 08.04.2025

Example of DFS

As DFS progresses, every vertex has a color:
» WHITE = undiscovered
> GRAY = discovered, but not finished (not done exploring from it)

» BLACK = finished (have found everything reachable from it)

1/12 8/11 13/—

2/7
9/10

3/4 5/6 14/15

time = 15

Lecture 14, 08.04.2025

Example of DFS

As DFS progresses, every vertex has a color:
» WHITE = undiscovered
> GRAY = discovered, but not finished (not done exploring from it)

» BLACK = finished (have found everything reachable from it)

1/12 8/11 13/16

2/7
9/10

3/4 5/6 14/15

time = 16

Lecture 14, 08.04.2025

Pseudocode of DFS

DFS(G)
for eachu € G.V
u.color = WHITE
time = 0
for eachu € G.V
if u.color == WHITE
DFS-VIsSIT(G, u)

Lecture 14, 08.04.2025

DFS-VISIT(G, u)
time = time + 1
u.d = time
u.color = GRAY
for each v € G.Adj[u]
if v.color == WHITE
DFS-VisIT(v)
u.color = BLACK
time = time + 1
u.f = time

// discover u
// explore (u,v)

// finish u

DFS-VISIT(G, u)

Pseudocode of DFS time = time + 1

u.d = time
u.color = GRAY // discover u
for each v € G.Adj[u] // explore (u,v)

if v.color == WHITE
DFS-VIsIT(v)
u.color = BLACK
time = time + 1
u.f = time // finish u

Lecture 14, 08.04.2025

DFS-VISIT(G, u)

Pseudocode of DFS time = time + 1

u.d = time
u.color = GRAY // discover u
for each v € G.Adj[u] // explore (u,v)

if v.color == WHITE
DFS-VIsIT(v)
u.color = BLACK
time = time + 1
u.f = time // finish u

Lecture 14, 08.04.2025

DFS-VISIT(G, u)

Pseudocode of DFS time = time + 1

u.d = time
u.color = GRAY // discover u
for each v € G.Adj[u] // explore (u,v)

if v.color == WHITE
DFS-VIsIT(v)
u.color = BLACK
time = time + 1
u.f = time // finish u

time = 3

Lecture 14, 08.04.2025

DFS-VISIT(G, u)

Pseudocode of DFS time = time + 1

u.d = time
u.color = GRAY // discover u
for each v € G.Adj[u] // explore (u,v)

if v.color == WHITE
DFS-VIsIT(v)
u.color = BLACK
time = time + 1
u.f = time // finish u

time = 4

Lecture 14, 08.04.2025

DFS-VISIT(G, u)

Pseudocode of DFS time = time + 1

u.d = time
u.color = GRAY // discover u
for each v € G.Adj[u] // explore (u,v)

if v.color == WHITE
DFS-VIsIT(v)
u.color = BLACK
time = time + 1
u.f = time // finish u

time =5

Lecture 14, 08.04.2025

DFS-VISIT(G, u)

Pseudocode of DFS time = time + 1

u.d = time
u.color = GRAY // discover u
for each v € G.Adj[u] // explore (u,v)

if v.color == WHITE
DFS-VIsIT(v)
u.color = BLACK
time = time + 1
u.f = time // finish u

time = 6

Lecture 14, 08.04.2025

DFS-VISIT(G, u)

Pseudocode of DFS time = time + 1

u.d = time
u.color = GRAY // discover u
for each v € G.Adj[u] // explore (u,v)

if v.color == WHITE
DFS-VIsIT(v)
u.color = BLACK
time = time + 1
u.f = time // finish u

time =7

Lecture 14, 08.04.2025

DFS-VISIT(G, u)

Pseudocode of DFS time = time + 1

u.d = time
u.color = GRAY // discover u
for each v € G.Adj[u] // explore (u,v)

if v.color == WHITE
DFS-VIsIT(v)
u.color = BLACK
time = time + 1
u.f = time // finish u

time = 8

Lecture 14, 08.04.2025

DFS-VISIT(G, u)

Pseudocode of DFS time = time + 1

u.d = time
u.color = GRAY // discover u
for each v € G.Adj[u] // explore (u,v)

if v.color == WHITE
DFS-VIsIT(v)
u.color = BLACK
time = time + 1
u.f = time // finish u

time = 9

Lecture 14, 08.04.2025

DFS-VISIT(G, u)

Pseudocode of DFS time = time + 1

u.d = time
u.color = GRAY // discover u
for each v € G.Adj[u] // explore (u,v)

if v.color == WHITE
DFS-VIsIT(v)
u.color = BLACK
time = time + 1

u.f = time // finish u
1/— 8/— —/—
3 / @/ S /
2/7
9/10
f
3/4 5/6 —/-
time = 10

Lecture 14, 08.04.2025

DFS-VISIT(G, u)

Pseudocode of DFS time = time + 1

u.d = time
u.color = GRAY // discover u
for each v € G.Adj[u] // explore (u,v)

if v.color == WHITE
DFS-VIsIT(v)
u.color = BLACK
time = time + 1

u.f = time // finish u
1/— /11 —/—
b e
2/7
9/10
f
3/4 5/6 —/—
time = 11

Lecture 14, 08.04.2025

DFS-VISIT(G, u)

Pseudocode of DFS time = time + 1

u.d = time
u.color = GRAY // discover u
for each v € G.Adj[u] // explore (u,v)

if v.color == WHITE
DFS-VIsIT(v)
u.color = BLACK
time = time + 1

u.f = time // finish u
1/12 8/11 —/—
e
2/7

9/10

f
3/4 5/6 —/-
time = 12

Lecture 14, 08.04.2025

DFS-VISIT(G, u)

Pseudocode of DFS time = time + 1

u.d = time
u.color = GRAY // discover u
for each v € G.Adj[u] // explore (u,v)

if v.color == WHITE
DFS-VIsIT(v)
u.color = BLACK
time = time + 1

u.f = time // finish u
1/12 8/11 13/—
e
2/7

9/10

f
3/4 5/6 —/—
time = 13

Lecture 14, 08.04.2025

DFS-VISIT(G, u)

Pseudocode of DFS time = time + 1

u.d = time
u.color = GRAY // discover u
for each v € G.Adj[u] // explore (u,v)

if v.color == WHITE
DFS-VIsIT(v)
u.color = BLACK
time = time + 1

u.f = time // finish u
1/12 8/11 13/—
e
2/7

9/10

f
3/4 5/6 14/—
time = 14

Lecture 14, 08.04.2025

DFS-VISIT(G, u)

Pseudocode of DFS time = time + 1

u.d = time
u.color = GRAY // discover u
for each v € G.Adj[u] // explore (u,v)

if v.color == WHITE
DFS-VIsIT(v)
u.color = BLACK
time = time + 1

u.f = time // finish u
1/12 8/11 13/—
e
2/7
9/10
3/4 5/6 14/15
time = 15

Lecture 14, 08.04.2025

DFS-VISIT(G, u)

Pseudocode of DFS time = time + 1

u.d = time
u.color = GRAY // discover u
for each v € G.Adj[u] // explore (u,v)

if v.color == WHITE
DFS-VIsIT(v)
u.color = BLACK
time = time + 1

u.f = time // finish u
1/12 8/11 13/16
2/7
9/10
3/4 5/6 14/15
time = 16

Lecture 14, 08.04.2025

DFS forms a depth-first forest comprised of > 1 depth-first trees. Each
tree is made of edges (u, v) such that u is gray and v is white when
(u, v) is explored.

Lecture 14, 08.04.2025

DFS forms a depth-first forest comprised of > 1 depth-first trees. Each
tree is made of edges (u, v) such that u is gray and v is white when
(u, v) is explored.

Runtime analysis:

Lecture 14, 08.04.2025

DFS forms a depth-first forest comprised of > 1 depth-first trees. Each
tree is made of edges (u, v) such that u is gray and v is white when
(u, v) is explored.

Runtime analysis: ©(V + E)
> ©(V) because each vertex is discovered once

> O(E) because each edge is examined once if directed graph and
twice if undirected graph.

Lecture 14, 08.04.2025

Classification of edges

3/4 5/6

Lecture 14, 08.04.2025

Classification of edges

Tree edger In the depth-first forest, found by exploring (u, v)

3/4 5/6

Lecture 14, 08.04.2025

Classification of edges

Tree edger In the depth-first forest, found by exploring (u, v)

Back edge: (u,v) where u is a descendant of v

3/4 5/6

Lecture 14, 08.04.2025

Classification of edges

Tree ecoe In the depth-first forest, found by exploring (u, v)
Back edge: (u,v) where u is a descendant of v

Forward edge: (u,v) where v is a descendant of u, but not a tree edge

3/4 5/6

Lecture 14, 08.04.2025

Classification of edges

Tree edger In the depth-first forest, found by exploring (u, v)
Back edge: (u,v) where u is a descendant of v
Forward edge: (u,v) where v is a descendant of u, but not a tree edge

Cross edge: any other edge

3/4 5/6

Lecture 14, 08.04.2025

Classification of edges

Tree edger In the depth-first forest, found by exploring (u, v)
Back edge: (u,v) where u is a descendant of v

Forward edge: (u,v) where v is a descendant of u, but not a tree edge
Cross edge: any other edge

In DFS of an undirected graph we get only tree and back edges, no forward or
cross-edges. Why?

Lecture 14, 08.04.2025

Parenthesis theorem

For all u, v exactly one of the following holds

ud<uf<vd<v.forv.d<v.f<ud< u.f and neither of u
and v are descendant of each other

u.d<v.d<v.f<u.f and v is a descendant of u

v.d < u.d < u.f <v.f and u is a descendant of v.

3/4 5/6

Lecture 14, 08.04.2025

White-path theorem

Vertex v is a descendant of v if and only if at time u.d there is a path
from u to v consisting of only white vertices (except for u, which was
just colored gray)

3/4 5/6

Lecture 14, 08.04.2025

TOPOLOGICAL SORT

Lecture 14, 08.04.2025

Topological sort

Definition

INPUT: A directed acyclic graph (DAG) G = (V, E)

OUTPUT: a linear ordering of vertices such that if (u, v) € E, then u
appears somewhere before v

Lecture 14, 08.04.2025

Getting dressed in the morning:

in which order?

Lecture 14, 08.04.2025

When is a directed graph acyclic?

Lecture 14, 08.04.2025

When is a directed graph acyclic?

A directed graph G is acyclic if and only if a DFS of G yields no back
edges

Lecture 14, 08.04.2025

When is a directed graph acyclic?

A directed graph G is acyclic if and only if a DFS of G yields no back
edges

Proof. First show that back-edge implies cycle

Lecture 14, 08.04.2025

When is a directed graph acyclic?

A directed graph G is acyclic if and only if a DFS of G yields no back
edges

Proof. First show that back-edge implies cycle
Suppose there is a back edge (u, v). Then v is ancestor of u in depth-first forest.
Therefore there is a path from v to u, which creates a cycle.

Lecture 14, 08.04.2025

When is a directed graph acyclic?

A directed graph G is acyclic if and only if a DFS of G yields no back
edges

Proof. Second show that cycle implies back-edge

Lecture 14, 08.04.2025

When is a directed graph acyclic?

A directed graph G is acyclic if and only if a DFS of G yields no back
edges

Proof. Second show that cycle implies back-edge

Let v be the first vertex discovered in the cycle C and let (u, v) be the preceding edge
in C. At time v.d vertices in C form a white-path from v to v and hence u is a
descendant of v.

Lecture 14, 08.04.2025

Algorithm for topological sort

Lecture 14, 08.04.2025

Algorithm for topological sort

TOPOLOGICAL-SORT(G):
1. Call DFS(G) to compute finishing times v.f for all v € G.V
2. Output vertices in order of decreasing finishing times

Lecture 14, 08.04.2025

Algorithm for topological sort

TOPOLOGICAL-SORT(G):
1. Call DFS(G) to compute finishing times v.f for all v € G.V
2. Output vertices in order of decreasing finishing times

Example

11/16

watch) 9/10
12/15

13/14

S -
(ndrshorts) >) = shosy) TEORONTS

17/18 11/16 12/15 13/14 9/10 178 6/7 2/5 3/4

Lecture 14, 08.04.2025

Time Analysis

TOPOLOGICAL-SORT(G):
1. Call DFS(G) to compute finishing times v.f for all v € G.V
2. Output vertices in order of decreasing finishing times

Lecture 14, 08.04.2025

Time Analysis

TOPOLOGICAL-SORT(G):
1. Call DFS(G) to compute finishing times v.f for all v € G.V
2. Output vertices in order of decreasing finishing times

Do not need to sort by finishing times

> Can just output vertices as they are finished and understand that
we want the reverse of the list

Lecture 14, 08.04.2025

Time Analysis

TOPOLOGICAL-SORT(G):
1. Call DFS(G) to compute finishing times v.f for all v € G.V
2. Output vertices in order of decreasing finishing times

Do not need to sort by finishing times

> Can just output vertices as they are finished and understand that
we want the reverse of the list

> Or put them onto the front of a linked list as they are finished.
When done, the list contains vertices in topologically sorted order.

Time:

Lecture 14, 08.04.2025

Time Analysis

TOPOLOGICAL-SORT(G):
1. Call DFS(G) to compute finishing times v.f for all v € G.V
2. Output vertices in order of decreasing finishing times

Do not need to sort by finishing times

> Can just output vertices as they are finished and understand that
we want the reverse of the list

> Or put them onto the front of a linked list as they are finished.
When done, the list contains vertices in topologically sorted order.

Time: ©(V 4+ E) (same as DFS)

Lecture 14, 08.04.2025

Correctness

Need to show that if (u,v) € E then v.f < u.f
When we explore (u, v) what are the colors of u and v?

Lecture 14, 08.04.2025

Correctness

Need to show that if (u,v) € E then v.f < u.f
When we explore (u, v) what are the colors of u and v?

> uis gray

Lecture 14, 08.04.2025

Correctness

Need to show that if (u,v) € E then v.f < u.f
When we explore (u, v) what are the colors of u and v?

> uis gray

> Is v gray, too?

Lecture 14, 08.04.2025

Correctness

Need to show that if (u,v) € E then v.f < u.f
When we explore (u, v) what are the colors of u and v?

> uis gray
> Is v gray, too?
> No, because then v would be ancestor of u which implies that

there is a back edge so the graph is not acyclic (by previous
Lemma)

Lecture 14, 08.04.2025

Correctness

Need to show that if (u,v) € E then v.f < u.f
When we explore (u, v) what are the colors of u and v?
> uis gray

> Is v gray, too?
> No, because then v would be ancestor of u which implies that
there is a back edge so the graph is not acyclic (by previous
Lemma)
> Is v white?

> Then becomes descendant of u. By parenthesis theorem,
ud<vd<v.f<u.f

Lecture 14, 08.04.2025

Correctness

Need to show that if (u,v) € E then v.f < u.f
When we explore (u, v) what are the colors of u and v?
> uis gray

> Is v gray, too?
> No, because then v would be ancestor of u which implies that
there is a back edge so the graph is not acyclic (by previous
Lemma)

v

Is v white?
> Then becomes descendant of u. By parenthesis theorem,
ud<vd<v.f<u.f
Is v black?

> Then v is already finished. Since we are exploring (u, v), we
have not yet finished u. Therefore, v.f < u.f.

v

Lecture 14, 08.04.2025

Correctness

Need to show that if (u,v) € E then v.f < u.f
When we explore (u, v) what are the colors of u and v?
> uis gray

> Is v gray, too?
> No, because then v would be ancestor of u which implies that
there is a back edge so the graph is not acyclic (by previous
Lemma)

v

Is v white?
> Then becomes descendant of u. By parenthesis theorem,
ud<vd<v.f<u.f
Is v black?

> Then v is already finished. Since we are exploring (u, v), we
have not yet finished u. Therefore, v.f < u.f.

&

v

Lecture 14, 08.04.2025

> Graphs fundamental object to study
> Representation either by adjacency list or adjacency matrix

> Two natural ways of traversing a graph: breadth-first search and
depth-first search

> Topological sort of acyclic graphs by applying DFS and then order
according to decreasing finishing times

Lecture 14, 08.04.2025

