
Algorithms: Elementary Graph Algorithms
(BFS, DFS, TOPOLOGICAL SORT)

Ola Svensson

School of Computer and Communication Sciences

Lecture 14, 08.04.2025



GRAPHS

Lecture 14, 08.04.2025



Graphs
A graph G = (V , E ) consists of
↭ a vertex set V

↭ an edge set E that contain (ordered) pairs of vertices

A graph can be undirected, directed, vertex-weighted, edge-weighted, etc.

Undirected Graph

1 2

3

5 4

Directed Graph

1 2 3

4 5 6

How to represent a graph in the computer?

Lecture 14, 08.04.2025



Adjacency Lists

↭ Array Adj of |V | lists, one per vertex
↭ Vertex u’s list has all vertices v such that (u, v) → E (works for both

undirected and directed graphs)

↭ In pseudocode, we will denote the array as attribute G .Adj , so we
will see notation such as G .Adj[u].

Undirected Graph

1 2

3

5 4

Adjacency list Adj

Lecture 14, 08.04.2025



Adjacency Lists

↭ Array Adj of |V | lists, one per vertex
↭ Vertex u’s list has all vertices v such that (u, v) → E (works for both

undirected and directed graphs)

↭ In pseudocode, we will denote the array as attribute G .Adj , so we
will see notation such as G .Adj[u].

Directed Graph

1 2 3

4 5 6

Adjacency list Adj

Lecture 14, 08.04.2025



Adjacency Lists

↭ Array Adj of |V | lists, one per vertex
↭ Vertex u’s list has all vertices v such that (u, v) → E (works for both

undirected and directed graphs)

↭ In pseudocode, we will denote the array as attribute G .Adj , so we
will see notation such as G .Adj[u].

Directed Graph

1 2 3

4 5 6

Adjacency list Adj

Lecture 14, 08.04.2025



Adjacency matrix

↭ A |V | ↑ |V | matrix A = (aij) where

aij =
{

1 if(i , j) → E

0 otherwise

Undirected Graph

1 2

3

5 4

Adjacency matrix

Lecture 14, 08.04.2025



Adjacency matrix

↭ A |V | ↑ |V | matrix A = (aij) where

aij =
{

1 if(i , j) → E

0 otherwise

Directed Graph

1 2 3

4 5 6

Adjacency matrix

Lecture 14, 08.04.2025



Comparison of adjacency list and adjacency matrix

Adjacency list

Space = !(V + E )

Time: to list all vertices adjacent
to u: !(degree(u))

Time: to determine whether
(u, v) → E : O(degree(u))

Adjacency matrix

Space = !(V 2)

Time: to list all vertices adjacent
to u: !(V )

Time: to determine whether
(u, v) → E : !(1)

We can extend both representations to include other attributes such as
edge weights

Lecture 14, 08.04.2025



TRAVERSING/SEARCHING A GRAPH

Lecture 14, 08.04.2025



Breadth-First Search

Definition

INPUT: Graph G = (V , E ), either directed or undirected and
source vertex s → V

OUTPUT: v .d = distance (smallest number of edges) from s to v ,
for all v → V

Idea:
↭ Send a wave out from s

↭ First hits all vertices 1 edge from s

↭ From there, hits all vertices 2 edges from s ...

Lecture 14, 08.04.2025



Breadth-First Search

Definition

INPUT: Graph G = (V , E ), either directed or undirected and
source vertex s → V

OUTPUT: v .d = distance (smallest number of edges) from s to v ,
for all v → V

Idea:
↭ Send a wave out from s

↭ First hits all vertices 1 edge from s

↭ From there, hits all vertices 2 edges from s ...

Lecture 14, 08.04.2025



Example of Breadth-first search

s
0

a
→

c
→

d
→

f
→

b
→

e
→

g
→

h
→

Queue Q = s

Lecture 14, 08.04.2025



Example of Breadth-first search

s
0

a
1

c
1

d
→

f
→

b
→

e
→

g
→

h
→

Queue Q = a,c

Lecture 14, 08.04.2025



Example of Breadth-first search

s
0

a
1

c
1

d
2

f
→

b
→

e
→

g
→

h
→

Queue Q = c,d

Lecture 14, 08.04.2025



Example of Breadth-first search

s
0

a
1

c
1

d
2

f
2

b
→

e
→

g
→

h
→

Queue Q = d,f

Lecture 14, 08.04.2025



Example of Breadth-first search

s
0

a
1

c
1

d
2

f
2

b
3

e
→

g
→

h
→

Queue Q = f,b

Lecture 14, 08.04.2025



Example of Breadth-first search

s
0

a
1

c
1

d
2

f
2

b
3

e
3

g
3

h
3

Queue Q = b,e,g,h

Lecture 14, 08.04.2025



Example of Breadth-first search

s
0

a
1

c
1

d
2

f
2

b
3

e
3

g
3

h
3

Queue Q = e,g,h

Lecture 14, 08.04.2025



Example of Breadth-first search

s
0

a
1

c
1

d
2

f
2

b
3

e
3

g
3

h
3

Queue Q = g,h

Lecture 14, 08.04.2025



Example of Breadth-first search

s
0

a
1

c
1

d
2

f
2

b
3

e
3

g
3

h
3

Queue Q = h

Lecture 14, 08.04.2025



Example of Breadth-first search

s
0

a
1

c
1

d
2

f
2

b
3

e
3

g
3

h
3

Queue Q = nil

Lecture 14, 08.04.2025



Pseudocode of Breadth-first search

s
0

a
→

c
→

d
→

f
→

b
→

e
→

g
→

h
→

Queue Q = s

Lecture 14, 08.04.2025



Pseudocode of Breadth-first search

s
0

a
1

c
1

d
→

f
→

b
→

e
→

g
→

h
→

Queue Q = a,c

Lecture 14, 08.04.2025



Pseudocode of Breadth-first search

s
0

a
1

c
1

d
2

f
→

b
→

e
→

g
→

h
→

Queue Q = c,d

Lecture 14, 08.04.2025



Pseudocode of Breadth-first search

s
0

a
1

c
1

d
2

f
2

b
→

e
→

g
→

h
→

Queue Q = d,f

Lecture 14, 08.04.2025



Pseudocode of Breadth-first search

s
0

a
1

c
1

d
2

f
2

b
3

e
→

g
→

h
→

Queue Q = f,b

Lecture 14, 08.04.2025



Pseudocode of Breadth-first search

s
0

a
1

c
1

d
2

f
2

b
3

e
3

g
3

h
3

Queue Q = b,e,g,h

Lecture 14, 08.04.2025



Pseudocode of Breadth-first search

s
0

a
1

c
1

d
2

f
2

b
3

e
3

g
3

h
3

Queue Q = e,g,h

Lecture 14, 08.04.2025



Pseudocode of Breadth-first search

s
0

a
1

c
1

d
2

f
2

b
3

e
3

g
3

h
3

Queue Q = g,h

Lecture 14, 08.04.2025



Pseudocode of Breadth-first search

s
0

a
1

c
1

d
2

f
2

b
3

e
3

g
3

h
3

Queue Q = h

Lecture 14, 08.04.2025



Pseudocode of Breadth-first search

s
0

a
1

c
1

d
2

f
2

b
3

e
3

g
3

h
3

Queue Q = nil

Lecture 14, 08.04.2025



Analysis

Informal Idea of correctness (formal proof in book):

↭ Suppose that v .d is greater than the shortest distance from s to v

↭ but since algorithm repeatedly considers the vertices closest to the
root (by adding them to the queue) this cannot happen

Runtime analysis: O(V+E)
↭ O(V ) because each vertex enqueued at most once
↭ O(E ) because every vertex dequeued at most once and we examine

(u, v) only when u is dequeued. Therefore, every edge examined at
most once if directed and at most twice if undirected

Lecture 14, 08.04.2025



Analysis

Informal Idea of correctness (formal proof in book):
↭ Suppose that v .d is greater than the shortest distance from s to v

↭ but since algorithm repeatedly considers the vertices closest to the
root (by adding them to the queue) this cannot happen

Runtime analysis: O(V+E)
↭ O(V ) because each vertex enqueued at most once
↭ O(E ) because every vertex dequeued at most once and we examine

(u, v) only when u is dequeued. Therefore, every edge examined at
most once if directed and at most twice if undirected

Lecture 14, 08.04.2025



Analysis

Informal Idea of correctness (formal proof in book):
↭ Suppose that v .d is greater than the shortest distance from s to v

↭ but since algorithm repeatedly considers the vertices closest to the
root (by adding them to the queue) this cannot happen

Runtime analysis:

O(V+E)
↭ O(V ) because each vertex enqueued at most once
↭ O(E ) because every vertex dequeued at most once and we examine

(u, v) only when u is dequeued. Therefore, every edge examined at
most once if directed and at most twice if undirected

Lecture 14, 08.04.2025



Analysis

Informal Idea of correctness (formal proof in book):
↭ Suppose that v .d is greater than the shortest distance from s to v

↭ but since algorithm repeatedly considers the vertices closest to the
root (by adding them to the queue) this cannot happen

Runtime analysis: O(V+E)

↭ O(V ) because each vertex enqueued at most once
↭ O(E ) because every vertex dequeued at most once and we examine

(u, v) only when u is dequeued. Therefore, every edge examined at
most once if directed and at most twice if undirected

Lecture 14, 08.04.2025



Analysis

Informal Idea of correctness (formal proof in book):
↭ Suppose that v .d is greater than the shortest distance from s to v

↭ but since algorithm repeatedly considers the vertices closest to the
root (by adding them to the queue) this cannot happen

Runtime analysis: O(V+E)
↭ O(V ) because each vertex enqueued at most once

↭ O(E ) because every vertex dequeued at most once and we examine
(u, v) only when u is dequeued. Therefore, every edge examined at
most once if directed and at most twice if undirected

Lecture 14, 08.04.2025



Analysis

Informal Idea of correctness (formal proof in book):
↭ Suppose that v .d is greater than the shortest distance from s to v

↭ but since algorithm repeatedly considers the vertices closest to the
root (by adding them to the queue) this cannot happen

Runtime analysis: O(V+E)
↭ O(V ) because each vertex enqueued at most once
↭ O(E ) because every vertex dequeued at most once and we examine

(u, v) only when u is dequeued. Therefore, every edge examined at
most once if directed and at most twice if undirected

Lecture 14, 08.04.2025



Final notes on BFS

↭ BFS may not reach all the vertices
↭ We can save the shortest path tree by keeping track of the edge

that discovered the vertex

s
0

a
→

c
→

d
→

f
→

b →

e
→

g
→

h
→

Queue Q = s

Lecture 14, 08.04.2025



Final notes on BFS

↭ BFS may not reach all the vertices
↭ We can save the shortest path tree by keeping track of the edge

that discovered the vertex

s
0

a
1

c
1

d
→

f
→

b →

e
→

g
→

h
→

Queue Q = a,c

Lecture 14, 08.04.2025



Final notes on BFS

↭ BFS may not reach all the vertices
↭ We can save the shortest path tree by keeping track of the edge

that discovered the vertex

s
0

a
1

c
1

d
2

f
→

b →

e
→

g
→

h
→

Queue Q = c,d

Lecture 14, 08.04.2025



Final notes on BFS

↭ BFS may not reach all the vertices
↭ We can save the shortest path tree by keeping track of the edge

that discovered the vertex

s
0

a
1

c
1

d
2

f
2

b →

e
→

g
→

h
→

Queue Q = d,f

Lecture 14, 08.04.2025



Final notes on BFS

↭ BFS may not reach all the vertices
↭ We can save the shortest path tree by keeping track of the edge

that discovered the vertex

s
0

a
1

c
1

d
2

f
2

b
3

e
→

g
→

h
→

Queue Q = f,b

Lecture 14, 08.04.2025



Final notes on BFS

↭ BFS may not reach all the vertices
↭ We can save the shortest path tree by keeping track of the edge

that discovered the vertex

s
0

a
1

c
1

d
2

f
2

b
3

e
3

g
3

h
3

Queue Q = b,e,g,h

Lecture 14, 08.04.2025



Final notes on BFS

↭ BFS may not reach all the vertices
↭ We can save the shortest path tree by keeping track of the edge

that discovered the vertex

s
0

a
1

c
1

d
2

f
2

b
3

e
3

g
3

h
3

Queue Q = e,g,h

Lecture 14, 08.04.2025



Final notes on BFS

↭ BFS may not reach all the vertices
↭ We can save the shortest path tree by keeping track of the edge

that discovered the vertex

s
0

a
1

c
1

d
2

f
2

b
3

e
3

g
3

h
3

Queue Q = g,h

Lecture 14, 08.04.2025



Final notes on BFS

↭ BFS may not reach all the vertices
↭ We can save the shortest path tree by keeping track of the edge

that discovered the vertex

s
0

a
1

c
1

d
2

f
2

b
3

e
3

g
3

h
3

Queue Q = h

Lecture 14, 08.04.2025



Final notes on BFS

↭ BFS may not reach all the vertices
↭ We can save the shortest path tree by keeping track of the edge

that discovered the vertex

s
0

a
1

c
1

d
2

f
2

b
3

e
3

g
3

h
3

Queue Q = nil

Lecture 14, 08.04.2025



Depth-First Search

Definition

INPUT: Graph G = (V , E ), either directed or undirected

OUTPUT: 2 timestamps on each vertex: v .d = discovery time and
v .f = finishing time

Idea:
↭ Methodically explore every edge
↭ Start over from di!erent vertices as necessary

↭ As soon as we discover a vertex explore from it,
↭ Unlike BFS, which explores vertices that are close to a source

first

Lecture 14, 08.04.2025



Depth-First Search

Definition

INPUT: Graph G = (V , E ), either directed or undirected

OUTPUT: 2 timestamps on each vertex: v .d = discovery time and
v .f = finishing time

Idea:
↭ Methodically explore every edge
↭ Start over from di!erent vertices as necessary

↭ As soon as we discover a vertex explore from it,
↭ Unlike BFS, which explores vertices that are close to a source

first

Lecture 14, 08.04.2025



Example of DFS
As DFS progresses, every vertex has a color:
↭ WHITE = undiscovered
↭ GRAY = discovered, but not finished (not done exploring from it)

↭ BLACK = finished (have found everything reachable from it)

a
↑/↑

b
1/↑

c
↑/↑

d ↑/↑

e
↑/↑

f
↑/↑

g
↑/↑

h
↑/↑

time = 1

Lecture 14, 08.04.2025



Example of DFS
As DFS progresses, every vertex has a color:
↭ WHITE = undiscovered
↭ GRAY = discovered, but not finished (not done exploring from it)

↭ BLACK = finished (have found everything reachable from it)

a
2/↑

b
1/↑

c
↑/↑

d ↑/↑

e
↑/↑

f
↑/↑

g
↑/↑

h
↑/↑

time = 2

Lecture 14, 08.04.2025



Example of DFS
As DFS progresses, every vertex has a color:
↭ WHITE = undiscovered
↭ GRAY = discovered, but not finished (not done exploring from it)

↭ BLACK = finished (have found everything reachable from it)

a
2/↑

b
1/↑

c
↑/↑

d ↑/↑

e
↑/↑

f
↑/↑

g
↑/↑

h
3/↑

time = 3

Lecture 14, 08.04.2025



Example of DFS
As DFS progresses, every vertex has a color:
↭ WHITE = undiscovered
↭ GRAY = discovered, but not finished (not done exploring from it)

↭ BLACK = finished (have found everything reachable from it)

a
2/↑

b
1/↑

c
↑/↑

d ↑/↑

e
↑/↑

f
↑/↑

g
↑/↑

h
3/4

time = 4

Lecture 14, 08.04.2025



Example of DFS
As DFS progresses, every vertex has a color:
↭ WHITE = undiscovered
↭ GRAY = discovered, but not finished (not done exploring from it)

↭ BLACK = finished (have found everything reachable from it)

a
2/↑

b
1/↑

c
↑/↑

d ↑/↑

e
↑/↑

f
↑/↑

g
5/↑

h
3/4

time = 5

Lecture 14, 08.04.2025



Example of DFS
As DFS progresses, every vertex has a color:
↭ WHITE = undiscovered
↭ GRAY = discovered, but not finished (not done exploring from it)

↭ BLACK = finished (have found everything reachable from it)

a
2/↑

b
1/↑

c
↑/↑

d ↑/↑

e
↑/↑

f
↑/↑

g
5/6

h
3/4

time = 6

Lecture 14, 08.04.2025



Example of DFS
As DFS progresses, every vertex has a color:
↭ WHITE = undiscovered
↭ GRAY = discovered, but not finished (not done exploring from it)

↭ BLACK = finished (have found everything reachable from it)

a
2/7

b
1/↑

c
↑/↑

d ↑/↑

e
↑/↑

f
↑/↑

g
5/6

h
3/4

time = 7

Lecture 14, 08.04.2025



Example of DFS
As DFS progresses, every vertex has a color:
↭ WHITE = undiscovered
↭ GRAY = discovered, but not finished (not done exploring from it)

↭ BLACK = finished (have found everything reachable from it)

a
2/7

b
1/↑

c
8/↑

d ↑/↑

e
↑/↑

f
↑/↑

g
5/6

h
3/4

time = 8

Lecture 14, 08.04.2025



Example of DFS
As DFS progresses, every vertex has a color:
↭ WHITE = undiscovered
↭ GRAY = discovered, but not finished (not done exploring from it)

↭ BLACK = finished (have found everything reachable from it)

a
2/7

b
1/↑

c
8/↑

d 9/↑

e
↑/↑

f
↑/↑

g
5/6

h
3/4

time = 9

Lecture 14, 08.04.2025



Example of DFS
As DFS progresses, every vertex has a color:
↭ WHITE = undiscovered
↭ GRAY = discovered, but not finished (not done exploring from it)

↭ BLACK = finished (have found everything reachable from it)

a
2/7

b
1/↑

c
8/↑

d 9/10

e
↑/↑

f
↑/↑

g
5/6

h
3/4

time = 10

Lecture 14, 08.04.2025



Example of DFS
As DFS progresses, every vertex has a color:
↭ WHITE = undiscovered
↭ GRAY = discovered, but not finished (not done exploring from it)

↭ BLACK = finished (have found everything reachable from it)

a
2/7

b
1/↑

c
8/11

d 9/10

e
↑/↑

f
↑/↑

g
5/6

h
3/4

time = 11

Lecture 14, 08.04.2025



Example of DFS
As DFS progresses, every vertex has a color:
↭ WHITE = undiscovered
↭ GRAY = discovered, but not finished (not done exploring from it)

↭ BLACK = finished (have found everything reachable from it)

a
2/7

b
1/12

c
8/11

d 9/10

e
↑/↑

f
↑/↑

g
5/6

h
3/4

time = 12

Lecture 14, 08.04.2025



Example of DFS
As DFS progresses, every vertex has a color:
↭ WHITE = undiscovered
↭ GRAY = discovered, but not finished (not done exploring from it)

↭ BLACK = finished (have found everything reachable from it)

a
2/7

b
1/12

c
8/11

d 9/10

e
13/↑

f
↑/↑

g
5/6

h
3/4

time = 13

Lecture 14, 08.04.2025



Example of DFS
As DFS progresses, every vertex has a color:
↭ WHITE = undiscovered
↭ GRAY = discovered, but not finished (not done exploring from it)

↭ BLACK = finished (have found everything reachable from it)

a
2/7

b
1/12

c
8/11

d 9/10

e
13/↑

f
14/↑

g
5/6

h
3/4

time = 14

Lecture 14, 08.04.2025



Example of DFS
As DFS progresses, every vertex has a color:
↭ WHITE = undiscovered
↭ GRAY = discovered, but not finished (not done exploring from it)

↭ BLACK = finished (have found everything reachable from it)

a
2/7

b
1/12

c
8/11

d 9/10

e
13/↑

f
14/15

g
5/6

h
3/4

time = 15

Lecture 14, 08.04.2025



Example of DFS
As DFS progresses, every vertex has a color:
↭ WHITE = undiscovered
↭ GRAY = discovered, but not finished (not done exploring from it)

↭ BLACK = finished (have found everything reachable from it)

a
2/7

b
1/12

c
8/11

d 9/10

e
13/16

f
14/15

g
5/6

h
3/4

time = 16

Lecture 14, 08.04.2025



Pseudocode of DFS

Lecture 14, 08.04.2025



Pseudocode of DFS

a
↑/↑

b
1/↑

c
↑/↑

d ↑/↑

e
↑/↑

f
↑/↑

g
↑/↑

h
↑/↑

time = 1

Lecture 14, 08.04.2025



Pseudocode of DFS

a
2/↑

b
1/↑

c
↑/↑

d ↑/↑

e
↑/↑

f
↑/↑

g
↑/↑

h
↑/↑

time = 2

Lecture 14, 08.04.2025



Pseudocode of DFS

a
2/↑

b
1/↑

c
↑/↑

d ↑/↑

e
↑/↑

f
↑/↑

g
↑/↑

h
3/↑

time = 3

Lecture 14, 08.04.2025



Pseudocode of DFS

a
2/↑

b
1/↑

c
↑/↑

d ↑/↑

e
↑/↑

f
↑/↑

g
↑/↑

h
3/4

time = 4

Lecture 14, 08.04.2025



Pseudocode of DFS

a
2/↑

b
1/↑

c
↑/↑

d ↑/↑

e
↑/↑

f
↑/↑

g
5/↑

h
3/4

time = 5

Lecture 14, 08.04.2025



Pseudocode of DFS

a
2/↑

b
1/↑

c
↑/↑

d ↑/↑

e
↑/↑

f
↑/↑

g
5/6

h
3/4

time = 6

Lecture 14, 08.04.2025



Pseudocode of DFS

a
2/7

b
1/↑

c
↑/↑

d ↑/↑

e
↑/↑

f
↑/↑

g
5/6

h
3/4

time = 7

Lecture 14, 08.04.2025



Pseudocode of DFS

a
2/7

b
1/↑

c
8/↑

d ↑/↑

e
↑/↑

f
↑/↑

g
5/6

h
3/4

time = 8

Lecture 14, 08.04.2025



Pseudocode of DFS

a
2/7

b
1/↑

c
8/↑

d 9/↑

e
↑/↑

f
↑/↑

g
5/6

h
3/4

time = 9

Lecture 14, 08.04.2025



Pseudocode of DFS

a
2/7

b
1/↑

c
8/↑

d 9/10

e
↑/↑

f
↑/↑

g
5/6

h
3/4

time = 10

Lecture 14, 08.04.2025



Pseudocode of DFS

a
2/7

b
1/↑

c
8/11

d 9/10

e
↑/↑

f
↑/↑

g
5/6

h
3/4

time = 11

Lecture 14, 08.04.2025



Pseudocode of DFS

a
2/7

b
1/12

c
8/11

d 9/10

e
↑/↑

f
↑/↑

g
5/6

h
3/4

time = 12

Lecture 14, 08.04.2025



Pseudocode of DFS

a
2/7

b
1/12

c
8/11

d 9/10

e
13/↑

f
↑/↑

g
5/6

h
3/4

time = 13

Lecture 14, 08.04.2025



Pseudocode of DFS

a
2/7

b
1/12

c
8/11

d 9/10

e
13/↑

f
14/↑

g
5/6

h
3/4

time = 14

Lecture 14, 08.04.2025



Pseudocode of DFS

a
2/7

b
1/12

c
8/11

d 9/10

e
13/↑

f
14/15

g
5/6

h
3/4

time = 15

Lecture 14, 08.04.2025



Pseudocode of DFS

a
2/7

b
1/12

c
8/11

d 9/10

e
13/16

f
14/15

g
5/6

h
3/4

time = 16

Lecture 14, 08.04.2025



Analysis

DFS forms a depth-first forest comprised of ↓ 1 depth-first trees. Each
tree is made of edges (u, v) such that u is gray and v is white when
(u, v) is explored.

Runtime analysis: !(V + E )
↭ !(V ) because each vertex is discovered once
↭ !(E ) because each edge is examined once if directed graph and

twice if undirected graph.

Lecture 14, 08.04.2025



Analysis

DFS forms a depth-first forest comprised of ↓ 1 depth-first trees. Each
tree is made of edges (u, v) such that u is gray and v is white when
(u, v) is explored.

Runtime analysis:

!(V + E )
↭ !(V ) because each vertex is discovered once
↭ !(E ) because each edge is examined once if directed graph and

twice if undirected graph.

Lecture 14, 08.04.2025



Analysis

DFS forms a depth-first forest comprised of ↓ 1 depth-first trees. Each
tree is made of edges (u, v) such that u is gray and v is white when
(u, v) is explored.

Runtime analysis: !(V + E )
↭ !(V ) because each vertex is discovered once
↭ !(E ) because each edge is examined once if directed graph and

twice if undirected graph.

Lecture 14, 08.04.2025



Classification of edges

Tree edge: In the depth-first forest, found by exploring (u, v)
Back edge: (u, v) where u is a descendant of v

Forward edge: (u, v) where v is a descendant of u, but not a tree edge
Cross edge: any other edge

In DFS of an undirected graph we get only tree and back edges, no forward or
cross-edges. Why?

a
2/7

b
1/12

c
8/11

d 9/10

e
13/16

f
14/15

g
5/6

h
3/4

Lecture 14, 08.04.2025



Classification of edges
Tree edge: In the depth-first forest, found by exploring (u, v)

Back edge: (u, v) where u is a descendant of v

Forward edge: (u, v) where v is a descendant of u, but not a tree edge
Cross edge: any other edge

In DFS of an undirected graph we get only tree and back edges, no forward or
cross-edges. Why?

a
2/7

b
1/12

c
8/11

d 9/10

e
13/16

f
14/15

g
5/6

h
3/4

Lecture 14, 08.04.2025



Classification of edges
Tree edge: In the depth-first forest, found by exploring (u, v)
Back edge: (u, v) where u is a descendant of v

Forward edge: (u, v) where v is a descendant of u, but not a tree edge
Cross edge: any other edge

In DFS of an undirected graph we get only tree and back edges, no forward or
cross-edges. Why?

a
2/7

b
1/12

c
8/11

d 9/10

e
13/16

f
14/15

g
5/6

h
3/4

Lecture 14, 08.04.2025



Classification of edges
Tree edge: In the depth-first forest, found by exploring (u, v)
Back edge: (u, v) where u is a descendant of v

Forward edge: (u, v) where v is a descendant of u, but not a tree edge

Cross edge: any other edge
In DFS of an undirected graph we get only tree and back edges, no forward or
cross-edges. Why?

a
2/7

b
1/12

c
8/11

d 9/10

e
13/16

f
14/15

g
5/6

h
3/4

Lecture 14, 08.04.2025



Classification of edges
Tree edge: In the depth-first forest, found by exploring (u, v)
Back edge: (u, v) where u is a descendant of v

Forward edge: (u, v) where v is a descendant of u, but not a tree edge
Cross edge: any other edge

In DFS of an undirected graph we get only tree and back edges, no forward or
cross-edges. Why?

a
2/7

b
1/12

c
8/11

d 9/10

e
13/16

f
14/15

g
5/6

h
3/4

Lecture 14, 08.04.2025



Classification of edges
Tree edge: In the depth-first forest, found by exploring (u, v)
Back edge: (u, v) where u is a descendant of v

Forward edge: (u, v) where v is a descendant of u, but not a tree edge
Cross edge: any other edge

In DFS of an undirected graph we get only tree and back edges, no forward or
cross-edges. Why?

a
2/7

b
1/12

c
8/11

d 9/10

e
13/16

f
14/15

g
5/6

h
3/4

Lecture 14, 08.04.2025



Parenthesis theorem
For all u, v exactly one of the following holds

1 u.d < u.f < v .d < v .f or v .d < v .f < u.d < u.f and neither of u

and v are descendant of each other

2 u.d < v .d < v .f < u.f and v is a descendant of u

3 v .d < u.d < u.f < v .f and u is a descendant of v .

a
2/7

b
1/12

c
8/11

d 9/10

e
13/16

f
14/15

g
5/6

h
3/4

Lecture 14, 08.04.2025



White-path theorem

Vertex v is a descendant of u if and only if at time u.d there is a path
from u to v consisting of only white vertices (except for u, which was
just colored gray)

a
2/7

b
1/12

c
8/11

d 9/10

e
13/16

f
14/15

g
5/6

h
3/4

Lecture 14, 08.04.2025



TOPOLOGICAL SORT

Lecture 14, 08.04.2025



Topological sort

Definition

INPUT: A directed acyclic graph (DAG) G = (V , E )

OUTPUT: a linear ordering of vertices such that if (u, v) → E , then u

appears somewhere before v

Lecture 14, 08.04.2025



Example
Getting dressed in the morning:

in which order?

Lecture 14, 08.04.2025



When is a directed graph acyclic?

Lemma

A directed graph G is acyclic if and only if a DFS of G yields no back

edges

Proof. First show that back-edge implies cycle
Suppose there is a back edge (u, v). Then v is ancestor of u in depth-first forest.
Therefore there is a path from v to u, which creates a cycle.

v

u

T

T

T

B

Lecture 14, 08.04.2025



When is a directed graph acyclic?
Lemma

A directed graph G is acyclic if and only if a DFS of G yields no back

edges

Proof. First show that back-edge implies cycle
Suppose there is a back edge (u, v). Then v is ancestor of u in depth-first forest.
Therefore there is a path from v to u, which creates a cycle.

v

u

T

T

T

B

Lecture 14, 08.04.2025



When is a directed graph acyclic?
Lemma

A directed graph G is acyclic if and only if a DFS of G yields no back

edges

Proof. First show that back-edge implies cycle

Suppose there is a back edge (u, v). Then v is ancestor of u in depth-first forest.
Therefore there is a path from v to u, which creates a cycle.

v

u

T

T

T

B

Lecture 14, 08.04.2025



When is a directed graph acyclic?
Lemma

A directed graph G is acyclic if and only if a DFS of G yields no back

edges

Proof. First show that back-edge implies cycle
Suppose there is a back edge (u, v). Then v is ancestor of u in depth-first forest.
Therefore there is a path from v to u, which creates a cycle.

v

u

T

T

T

B

Lecture 14, 08.04.2025



When is a directed graph acyclic?
Lemma

A directed graph G is acyclic if and only if a DFS of G yields no back

edges

Proof. Second show that cycle implies back-edge

Let v be the first vertex discovered in the cycle C and let (u, v) be the preceding edge
in C . At time v .d vertices in C form a white-path from v to u and hence u is a
descendant of v .

v

u

T

T

T

B

Lecture 14, 08.04.2025



When is a directed graph acyclic?
Lemma

A directed graph G is acyclic if and only if a DFS of G yields no back

edges

Proof. Second show that cycle implies back-edge
Let v be the first vertex discovered in the cycle C and let (u, v) be the preceding edge
in C . At time v .d vertices in C form a white-path from v to u and hence u is a
descendant of v .

v

u

T

T

T

B

Lecture 14, 08.04.2025



Algorithm for topological sort

Topological-Sort(G):
1. Call DFS(G) to compute finishing times v .f for all v → G .V
2. Output vertices in order of decreasing finishing times

Example

Lecture 14, 08.04.2025



Algorithm for topological sort
Topological-Sort(G):
1. Call DFS(G) to compute finishing times v .f for all v → G .V
2. Output vertices in order of decreasing finishing times

Example

Lecture 14, 08.04.2025



Algorithm for topological sort
Topological-Sort(G):
1. Call DFS(G) to compute finishing times v .f for all v → G .V
2. Output vertices in order of decreasing finishing times

Example

Lecture 14, 08.04.2025



Time Analysis
Topological-Sort(G):
1. Call DFS(G) to compute finishing times v .f for all v → G .V
2. Output vertices in order of decreasing finishing times

Do not need to sort by finishing times
↭ Can just output vertices as they are finished and understand that

we want the reverse of the list
↭ Or put them onto the front of a linked list as they are finished.

When done, the list contains vertices in topologically sorted order.

Time: !(V + E ) (same as DFS)

Lecture 14, 08.04.2025



Time Analysis
Topological-Sort(G):
1. Call DFS(G) to compute finishing times v .f for all v → G .V
2. Output vertices in order of decreasing finishing times

Do not need to sort by finishing times
↭ Can just output vertices as they are finished and understand that

we want the reverse of the list

↭ Or put them onto the front of a linked list as they are finished.
When done, the list contains vertices in topologically sorted order.

Time: !(V + E ) (same as DFS)

Lecture 14, 08.04.2025



Time Analysis
Topological-Sort(G):
1. Call DFS(G) to compute finishing times v .f for all v → G .V
2. Output vertices in order of decreasing finishing times

Do not need to sort by finishing times
↭ Can just output vertices as they are finished and understand that

we want the reverse of the list
↭ Or put them onto the front of a linked list as they are finished.

When done, the list contains vertices in topologically sorted order.

Time:

!(V + E ) (same as DFS)

Lecture 14, 08.04.2025



Time Analysis
Topological-Sort(G):
1. Call DFS(G) to compute finishing times v .f for all v → G .V
2. Output vertices in order of decreasing finishing times

Do not need to sort by finishing times
↭ Can just output vertices as they are finished and understand that

we want the reverse of the list
↭ Or put them onto the front of a linked list as they are finished.

When done, the list contains vertices in topologically sorted order.

Time: !(V + E ) (same as DFS)

Lecture 14, 08.04.2025



Correctness
Need to show that if (u, v) → E then v .f < u.f
When we explore (u, v) what are the colors of u and v?

↭ u is gray
↭ Is v gray, too?

↭ No, because then v would be ancestor of u which implies that
there is a back edge so the graph is not acyclic (by previous
Lemma)

↭ Is v white?
↭ Then becomes descendant of u. By parenthesis theorem,

u.d < v .d < v .f < u.f

↭ Is v black?
↭ Then v is already finished. Since we are exploring (u, v), we

have not yet finished u. Therefore, v .f < u.f .

Lecture 14, 08.04.2025



Correctness
Need to show that if (u, v) → E then v .f < u.f
When we explore (u, v) what are the colors of u and v?
↭ u is gray

↭ Is v gray, too?
↭ No, because then v would be ancestor of u which implies that

there is a back edge so the graph is not acyclic (by previous
Lemma)

↭ Is v white?
↭ Then becomes descendant of u. By parenthesis theorem,

u.d < v .d < v .f < u.f

↭ Is v black?
↭ Then v is already finished. Since we are exploring (u, v), we

have not yet finished u. Therefore, v .f < u.f .

Lecture 14, 08.04.2025



Correctness
Need to show that if (u, v) → E then v .f < u.f
When we explore (u, v) what are the colors of u and v?
↭ u is gray
↭ Is v gray, too?

↭ No, because then v would be ancestor of u which implies that
there is a back edge so the graph is not acyclic (by previous
Lemma)

↭ Is v white?
↭ Then becomes descendant of u. By parenthesis theorem,

u.d < v .d < v .f < u.f

↭ Is v black?
↭ Then v is already finished. Since we are exploring (u, v), we

have not yet finished u. Therefore, v .f < u.f .

Lecture 14, 08.04.2025



Correctness
Need to show that if (u, v) → E then v .f < u.f
When we explore (u, v) what are the colors of u and v?
↭ u is gray
↭ Is v gray, too?

↭ No, because then v would be ancestor of u which implies that
there is a back edge so the graph is not acyclic (by previous
Lemma)

↭ Is v white?
↭ Then becomes descendant of u. By parenthesis theorem,

u.d < v .d < v .f < u.f

↭ Is v black?
↭ Then v is already finished. Since we are exploring (u, v), we

have not yet finished u. Therefore, v .f < u.f .

Lecture 14, 08.04.2025



Correctness
Need to show that if (u, v) → E then v .f < u.f
When we explore (u, v) what are the colors of u and v?
↭ u is gray
↭ Is v gray, too?

↭ No, because then v would be ancestor of u which implies that
there is a back edge so the graph is not acyclic (by previous
Lemma)

↭ Is v white?
↭ Then becomes descendant of u. By parenthesis theorem,

u.d < v .d < v .f < u.f

↭ Is v black?
↭ Then v is already finished. Since we are exploring (u, v), we

have not yet finished u. Therefore, v .f < u.f .

Lecture 14, 08.04.2025



Correctness
Need to show that if (u, v) → E then v .f < u.f
When we explore (u, v) what are the colors of u and v?
↭ u is gray
↭ Is v gray, too?

↭ No, because then v would be ancestor of u which implies that
there is a back edge so the graph is not acyclic (by previous
Lemma)

↭ Is v white?
↭ Then becomes descendant of u. By parenthesis theorem,

u.d < v .d < v .f < u.f

↭ Is v black?
↭ Then v is already finished. Since we are exploring (u, v), we

have not yet finished u. Therefore, v .f < u.f .

Lecture 14, 08.04.2025



Correctness
Need to show that if (u, v) → E then v .f < u.f
When we explore (u, v) what are the colors of u and v?
↭ u is gray
↭ Is v gray, too?

↭ No, because then v would be ancestor of u which implies that
there is a back edge so the graph is not acyclic (by previous
Lemma)

↭ Is v white?
↭ Then becomes descendant of u. By parenthesis theorem,

u.d < v .d < v .f < u.f

↭ Is v black?
↭ Then v is already finished. Since we are exploring (u, v), we

have not yet finished u. Therefore, v .f < u.f .

Lecture 14, 08.04.2025



Summary

↭ Graphs fundamental object to study

↭ Representation either by adjacency list or adjacency matrix

↭ Two natural ways of traversing a graph: breadth-first search and
depth-first search

↭ Topological sort of acyclic graphs by applying DFS and then order
according to decreasing finishing times

Lecture 14, 08.04.2025


