

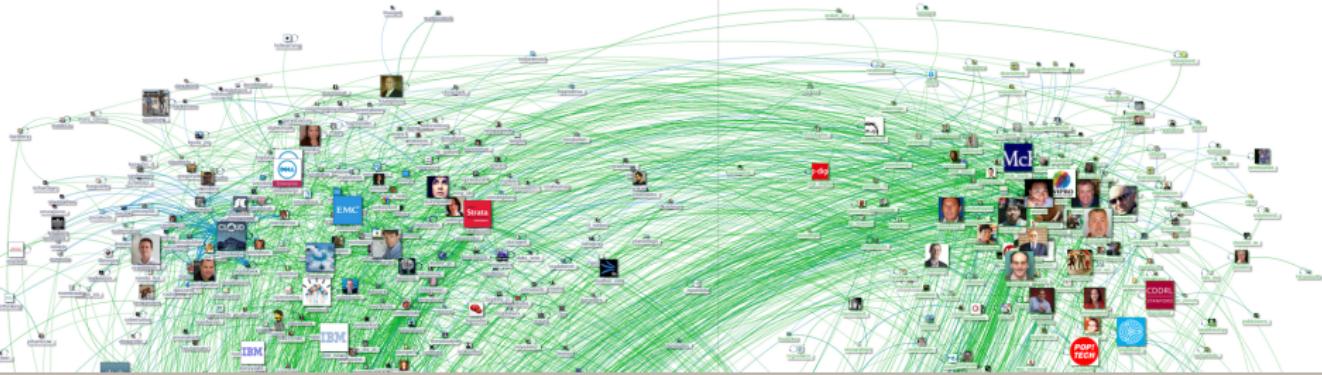
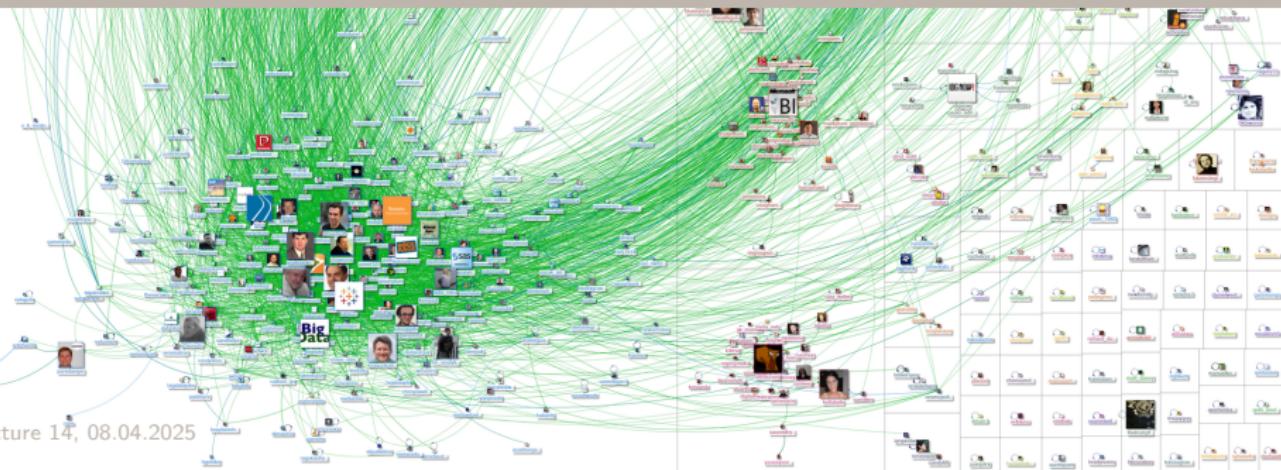
Algorithms: Elementary Graph Algorithms (BFS, DFS, TOPOLOGICAL SORT)

Ola Svensson

EPFL School of Computer and Communication Sciences

Lecture 14, 08.04.2025

GRAPHS

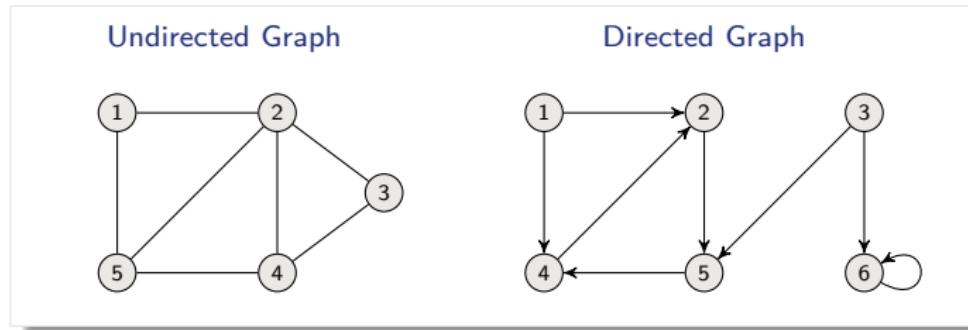


Graphs

A graph $G = (V, E)$ consists of

- ▶ a vertex set V
- ▶ an edge set E that contain (ordered) pairs of vertices

A graph can be undirected, directed, vertex-weighted, edge-weighted, etc.

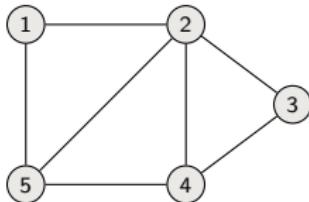


How to represent a graph in the computer?

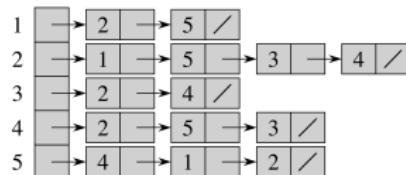
Adjacency Lists

- ▶ Array Adj of $|V|$ lists, one per vertex
- ▶ Vertex u 's list has all vertices v such that $(u, v) \in E$ (works for both undirected and directed graphs)

Undirected Graph



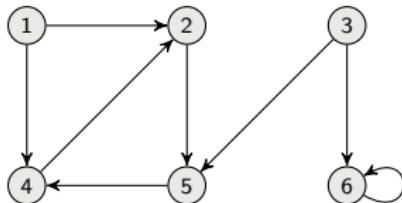
Adjacency list Adj



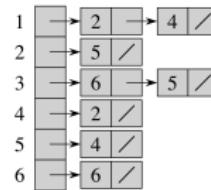
Adjacency Lists

- ▶ Array Adj of $|V|$ lists, one per vertex
- ▶ Vertex u 's list has all vertices v such that $(u, v) \in E$ (works for both undirected and directed graphs)

Directed Graph

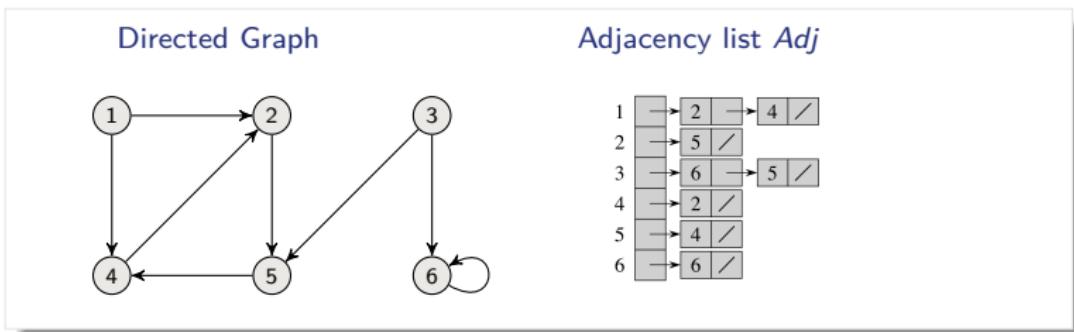


Adjacency list Adj



Adjacency Lists

- ▶ Array Adj of $|V|$ lists, one per vertex
- ▶ Vertex u 's list has all vertices v such that $(u, v) \in E$ (works for both undirected and directed graphs)
- ▶ In pseudocode, we will denote the array as attribute $G.Adj$, so we will see notation such as $G.Adj[u]$.

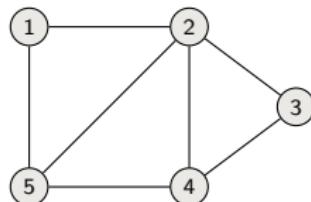


Adjacency matrix

- A $|V| \times |V|$ matrix $A = (a_{ij})$ where

$$a_{ij} = \begin{cases} 1 & \text{if } (i, j) \in E \\ 0 & \text{otherwise} \end{cases}$$

Undirected Graph



Adjacency matrix

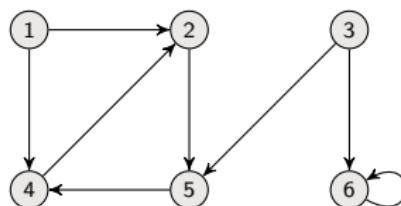
	1	2	3	4	5
1	0	1	0	0	1
2	1	0	1	1	1
3	0	1	0	1	0
4	0	1	1	0	1
5	1	1	0	1	0

Adjacency matrix

- A $|V| \times |V|$ matrix $A = (a_{ij})$ where

$$a_{ij} = \begin{cases} 1 & \text{if } (i, j) \in E \\ 0 & \text{otherwise} \end{cases}$$

Directed Graph



Adjacency matrix

	1	2	3	4	5	6
1	0	1	0	1	0	0
2	0	0	0	0	1	0
3	0	0	0	0	1	1
4	0	1	0	0	0	0
5	0	0	0	1	0	0
6	0	0	0	0	0	1

Comparison of adjacency list and adjacency matrix

Adjacency list

Space = $\Theta(V + E)$

Time: to list all vertices adjacent to u : $\Theta(\text{degree}(u))$

Time: to determine whether $(u, v) \in E$: $O(\text{degree}(u))$

Adjacency matrix

Space = $\Theta(V^2)$

Time: to list all vertices adjacent to u : $\Theta(V)$

Time: to determine whether $(u, v) \in E$: $\Theta(1)$

We can extend both representations to include other attributes such as edge weights

TRAVERSING/SEARCHING A GRAPH

Breadth-First Search

Definition

INPUT: Graph $G = (V, E)$, either directed or undirected and source vertex $s \in V$

OUTPUT: $v.d =$ distance (smallest number of edges) from s to v , for all $v \in V$

Breadth-First Search

Definition

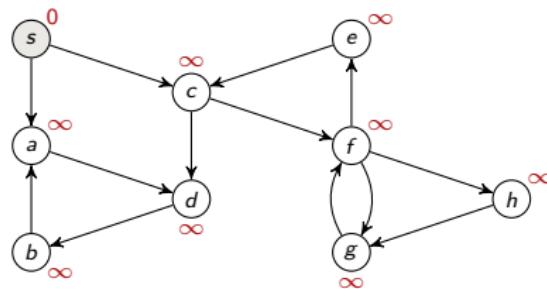
INPUT: Graph $G = (V, E)$, either directed or undirected and source vertex $s \in V$

OUTPUT: $v.d =$ distance (smallest number of edges) from s to v , for all $v \in V$

Idea:

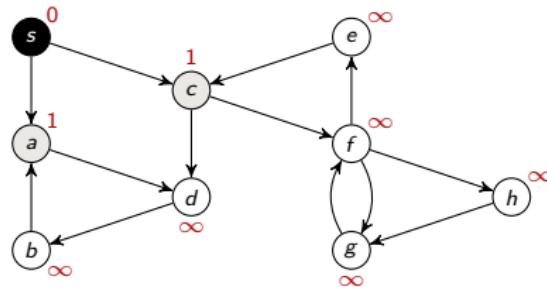
- ▶ Send a wave out from s
- ▶ First hits all vertices 1 edge from s
- ▶ From there, hits all vertices 2 edges from s ...

Example of Breadth-first search

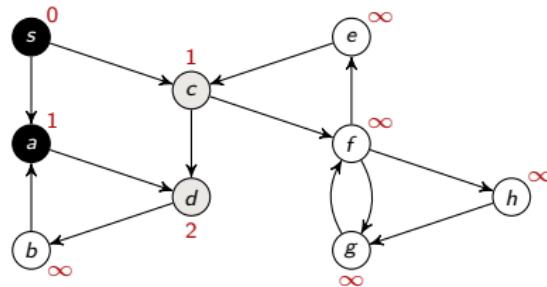


Queue $Q = s$

Example of Breadth-first search

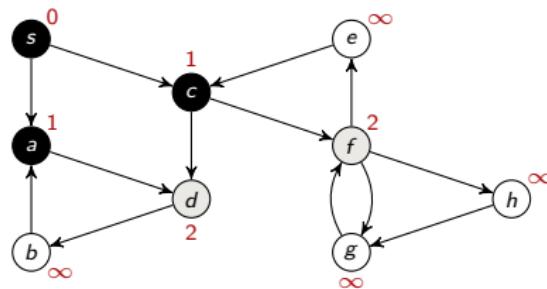


Example of Breadth-first search

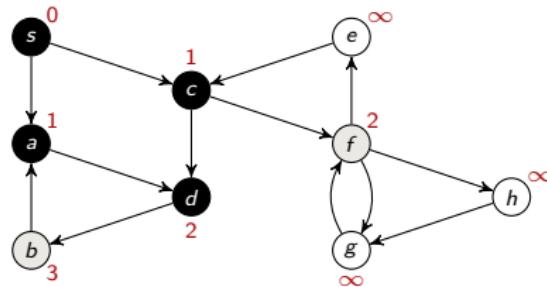


Queue $Q = c, d$

Example of Breadth-first search

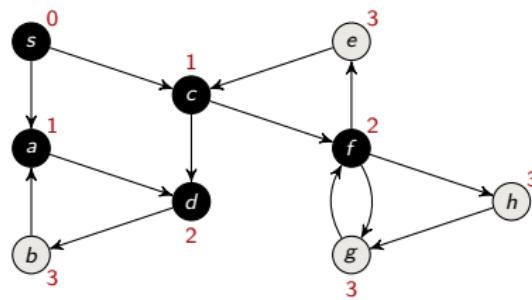


Example of Breadth-first search



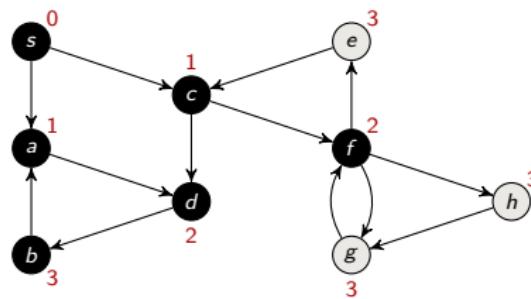
Queue $Q = f, b$

Example of Breadth-first search



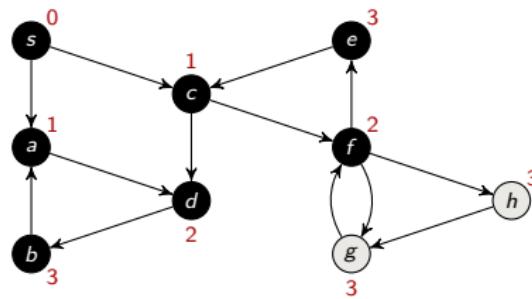
Queue $Q = b, e, g, h$

Example of Breadth-first search



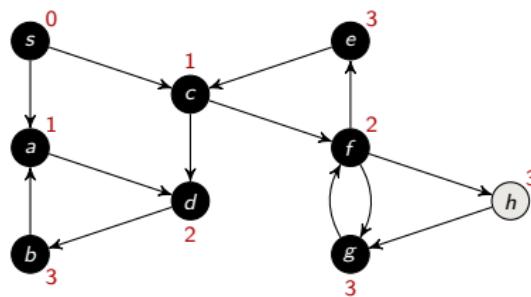
Queue $Q = e, g, h$

Example of Breadth-first search



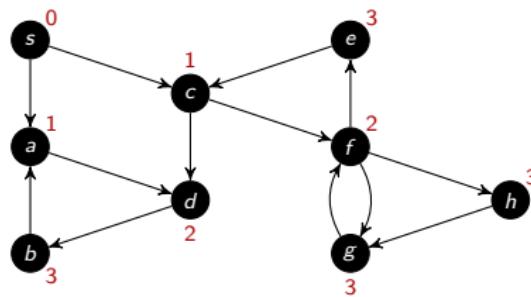
Queue $Q = g, h$

Example of Breadth-first search



Queue $Q = h$

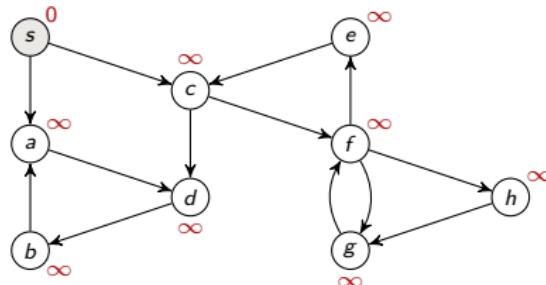
Example of Breadth-first search



Pseudocode of Breadth-first search

BFS(V, E, s)

```
for each  $u \in V - \{s\}$ 
   $u.d = \infty$ 
 $s.d = 0$ 
 $Q = \emptyset$ 
ENQUEUE( $Q, s$ )
while  $Q \neq \emptyset$ 
   $u = \text{DEQUEUE}(Q)$ 
  for each  $v \in G.\text{Adj}[u]$ 
    if  $v.d == \infty$ 
       $v.d = u.d + 1$ 
      ENQUEUE( $Q, v$ )
```

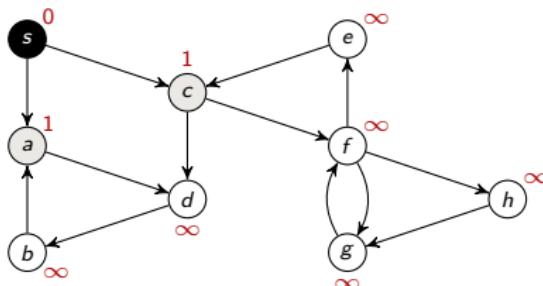


Queue $Q = s$

Pseudocode of Breadth-first search

BFS(V, E, s)

```
for each  $u \in V - \{s\}$ 
   $u.d = \infty$ 
 $s.d = 0$ 
 $Q = \emptyset$ 
ENQUEUE( $Q, s$ )
while  $Q \neq \emptyset$ 
   $u = \text{DEQUEUE}(Q)$ 
  for each  $v \in G.\text{Adj}[u]$ 
    if  $v.d == \infty$ 
       $v.d = u.d + 1$ 
      ENQUEUE( $Q, v$ )
```

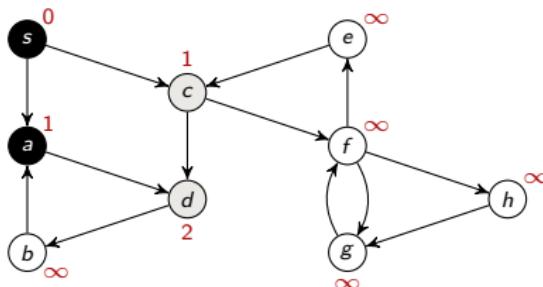


Queue $Q = a, c$

Pseudocode of Breadth-first search

BFS(V, E, s)

```
for each  $u \in V - \{s\}$ 
   $u.d = \infty$ 
 $s.d = 0$ 
 $Q = \emptyset$ 
ENQUEUE( $Q, s$ )
while  $Q \neq \emptyset$ 
   $u = \text{DEQUEUE}(Q)$ 
  for each  $v \in G.\text{Adj}[u]$ 
    if  $v.d == \infty$ 
       $v.d = u.d + 1$ 
      ENQUEUE( $Q, v$ )
```

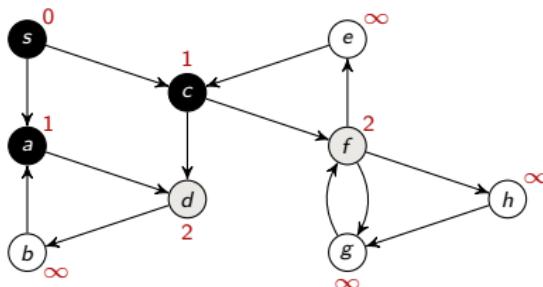


Queue $Q = c, d$

Pseudocode of Breadth-first search

BFS(V, E, s)

```
for each  $u \in V - \{s\}$ 
   $u.d = \infty$ 
 $s.d = 0$ 
 $Q = \emptyset$ 
ENQUEUE( $Q, s$ )
while  $Q \neq \emptyset$ 
   $u = \text{DEQUEUE}(Q)$ 
  for each  $v \in G.\text{Adj}[u]$ 
    if  $v.d == \infty$ 
       $v.d = u.d + 1$ 
      ENQUEUE( $Q, v$ )
```

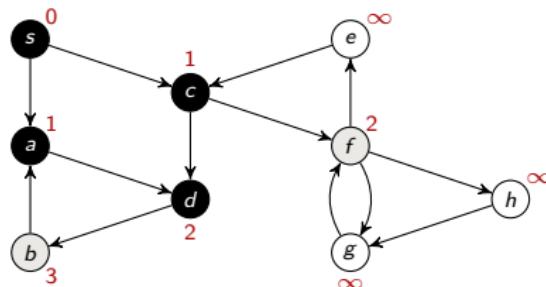


Queue $Q = d, f$

Pseudocode of Breadth-first search

BFS(V, E, s)

```
for each  $u \in V - \{s\}$ 
   $u.d = \infty$ 
 $s.d = 0$ 
 $Q = \emptyset$ 
ENQUEUE( $Q, s$ )
while  $Q \neq \emptyset$ 
   $u = \text{DEQUEUE}(Q)$ 
  for each  $v \in G.\text{Adj}[u]$ 
    if  $v.d == \infty$ 
       $v.d = u.d + 1$ 
      ENQUEUE( $Q, v$ )
```

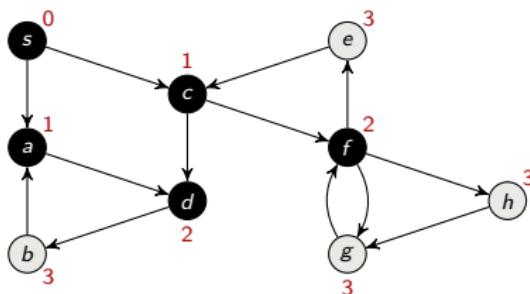


Queue $Q = f, b$

Pseudocode of Breadth-first search

BFS(V, E, s)

```
for each  $u \in V - \{s\}$ 
   $u.d = \infty$ 
 $s.d = 0$ 
 $Q = \emptyset$ 
ENQUEUE( $Q, s$ )
while  $Q \neq \emptyset$ 
   $u = \text{DEQUEUE}(Q)$ 
  for each  $v \in G.\text{Adj}[u]$ 
    if  $v.d == \infty$ 
       $v.d = u.d + 1$ 
      ENQUEUE( $Q, v$ )
```

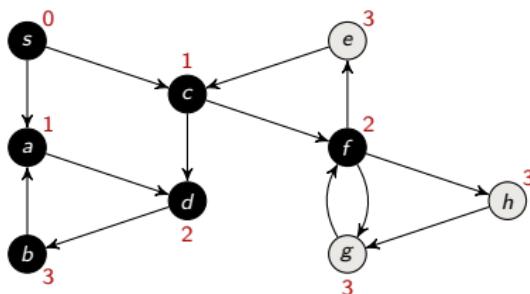


Queue $Q = b, e, g, h$

Pseudocode of Breadth-first search

BFS(V, E, s)

```
for each  $u \in V - \{s\}$ 
   $u.d = \infty$ 
 $s.d = 0$ 
 $Q = \emptyset$ 
ENQUEUE( $Q, s$ )
while  $Q \neq \emptyset$ 
   $u = \text{DEQUEUE}(Q)$ 
  for each  $v \in G.\text{Adj}[u]$ 
    if  $v.d == \infty$ 
       $v.d = u.d + 1$ 
      ENQUEUE( $Q, v$ )
```

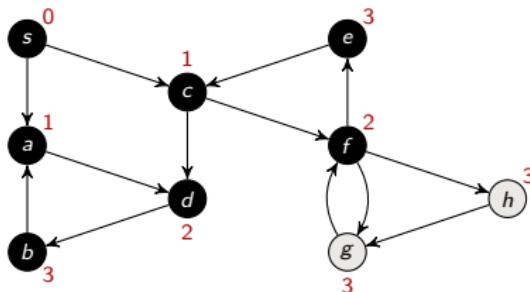


Queue $Q = e, g, h$

Pseudocode of Breadth-first search

BFS(V, E, s)

```
for each  $u \in V - \{s\}$ 
   $u.d = \infty$ 
 $s.d = 0$ 
 $Q = \emptyset$ 
ENQUEUE( $Q, s$ )
while  $Q \neq \emptyset$ 
   $u = \text{DEQUEUE}(Q)$ 
  for each  $v \in G.\text{Adj}[u]$ 
    if  $v.d == \infty$ 
       $v.d = u.d + 1$ 
      ENQUEUE( $Q, v$ )
```

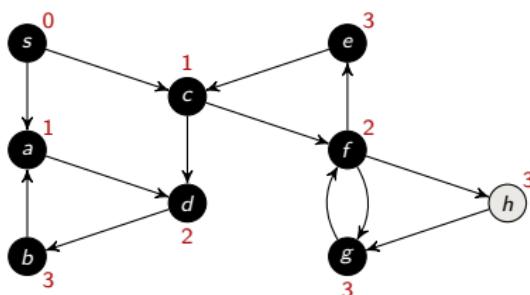


Queue $Q = g, h$

Pseudocode of Breadth-first search

BFS(V, E, s)

```
for each  $u \in V - \{s\}$ 
   $u.d = \infty$ 
 $s.d = 0$ 
 $Q = \emptyset$ 
ENQUEUE( $Q, s$ )
while  $Q \neq \emptyset$ 
   $u = \text{DEQUEUE}(Q)$ 
  for each  $v \in G.\text{Adj}[u]$ 
    if  $v.d == \infty$ 
       $v.d = u.d + 1$ 
      ENQUEUE( $Q, v$ )
```

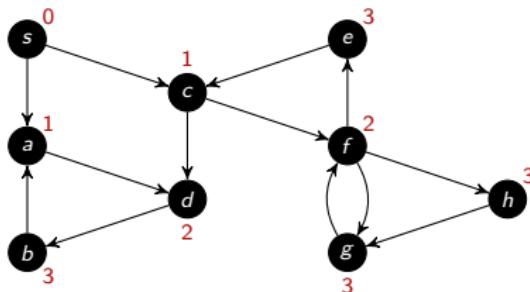


Queue $Q = h$

Pseudocode of Breadth-first search

BFS(V, E, s)

```
for each  $u \in V - \{s\}$ 
   $u.d = \infty$ 
 $s.d = 0$ 
 $Q = \emptyset$ 
ENQUEUE( $Q, s$ )
while  $Q \neq \emptyset$ 
   $u = \text{DEQUEUE}(Q)$ 
  for each  $v \in G.\text{Adj}[u]$ 
    if  $v.d == \infty$ 
       $v.d = u.d + 1$ 
      ENQUEUE( $Q, v$ )
```



Queue $Q = \text{nil}$

Analysis

Informal Idea of correctness (formal proof in book):

Analysis

Informal Idea of correctness (formal proof in book):

- ▶ Suppose that $v.d$ is greater than the shortest distance from s to v
- ▶ but since algorithm repeatedly considers the vertices closest to the root (by adding them to the queue) this cannot happen

Analysis

Informal Idea of correctness (formal proof in book):

- ▶ Suppose that $v.d$ is greater than the shortest distance from s to v
- ▶ but since algorithm repeatedly considers the vertices closest to the root (by adding them to the queue) this cannot happen

Runtime analysis:

Analysis

Informal Idea of correctness (formal proof in book):

- ▶ Suppose that $v.d$ is greater than the shortest distance from s to v
- ▶ but since algorithm repeatedly considers the vertices closest to the root (by adding them to the queue) this cannot happen

Runtime analysis: $O(V+E)$

Analysis

Informal Idea of correctness (formal proof in book):

- ▶ Suppose that $v.d$ is greater than the shortest distance from s to v
- ▶ but since algorithm repeatedly considers the vertices closest to the root (by adding them to the queue) this cannot happen

Runtime analysis: $O(V+E)$

- ▶ $O(V)$ because each vertex enqueued at most once

Analysis

Informal Idea of correctness (formal proof in book):

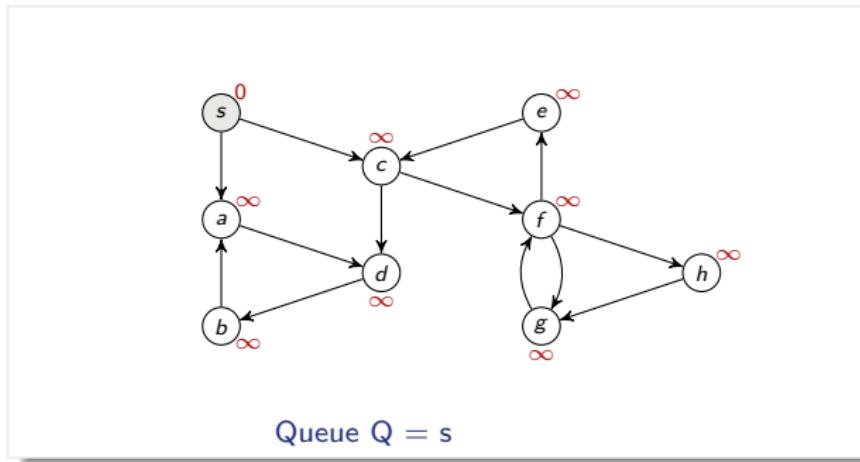
- ▶ Suppose that $v.d$ is greater than the shortest distance from s to v
- ▶ but since algorithm repeatedly considers the vertices closest to the root (by adding them to the queue) this cannot happen

Runtime analysis: $O(V+E)$

- ▶ $O(V)$ because each vertex enqueued at most once
- ▶ $O(E)$ because every vertex dequeued at most once and we examine (u, v) only when u is dequeued. Therefore, every edge examined at most once if directed and at most twice if undirected

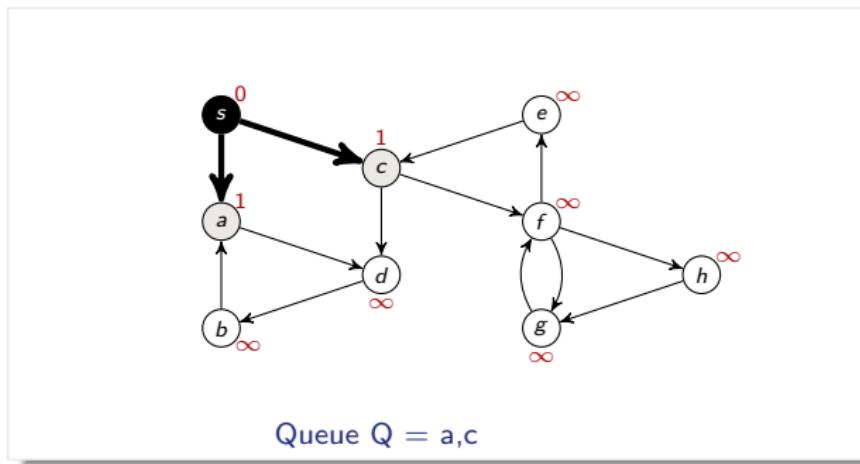
Final notes on BFS

- ▶ BFS may not reach all the vertices
- ▶ We can save the shortest path tree by keeping track of the edge that discovered the vertex



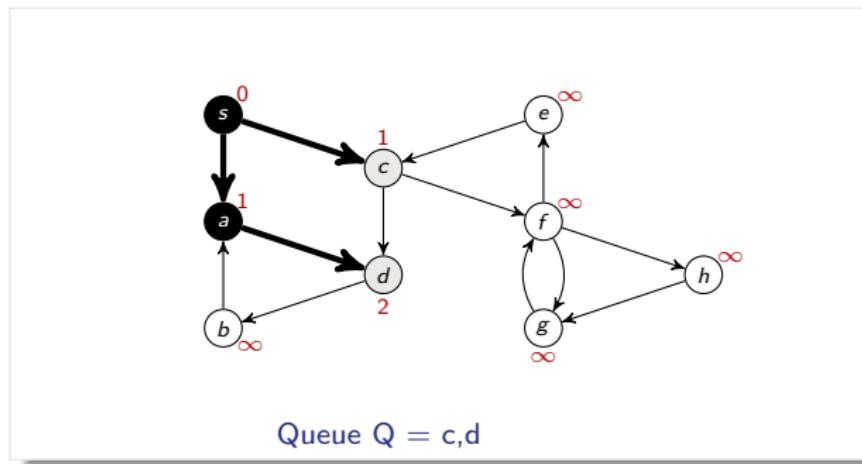
Final notes on BFS

- ▶ BFS may not reach all the vertices
- ▶ We can save the shortest path tree by keeping track of the edge that discovered the vertex



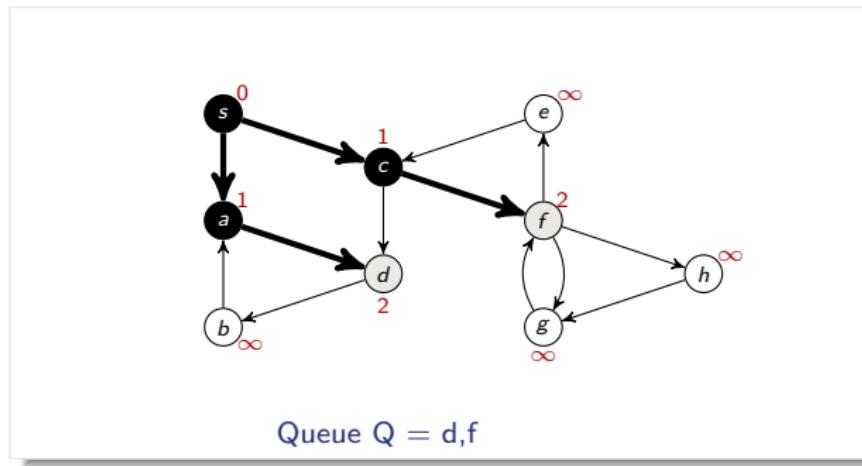
Final notes on BFS

- ▶ BFS may not reach all the vertices
- ▶ We can save the shortest path tree by keeping track of the edge that discovered the vertex



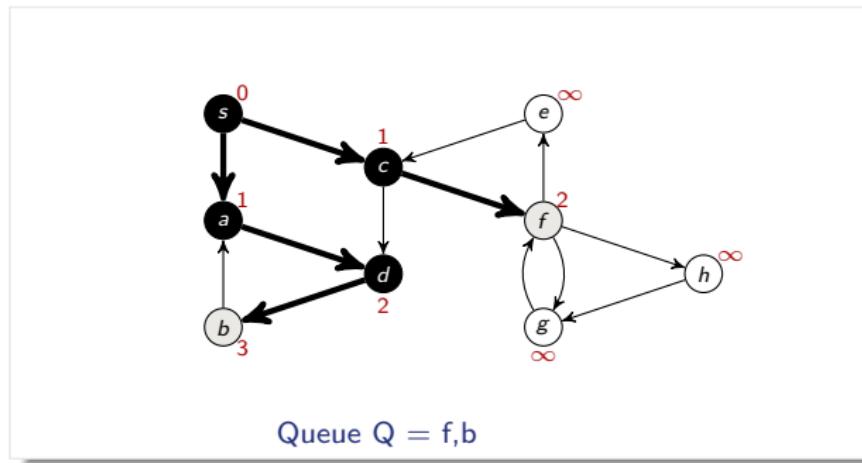
Final notes on BFS

- ▶ BFS may not reach all the vertices
- ▶ We can save the shortest path tree by keeping track of the edge that discovered the vertex



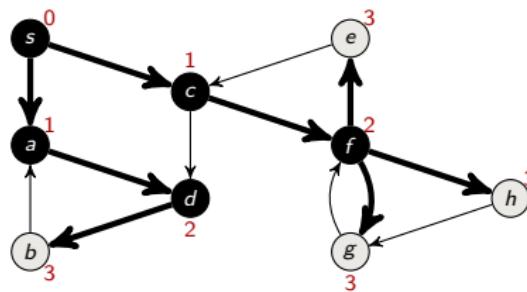
Final notes on BFS

- ▶ BFS may not reach all the vertices
- ▶ We can save the shortest path tree by keeping track of the edge that discovered the vertex



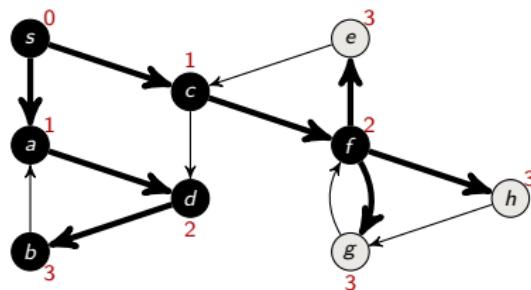
Final notes on BFS

- ▶ BFS may not reach all the vertices
- ▶ We can save the shortest path tree by keeping track of the edge that discovered the vertex



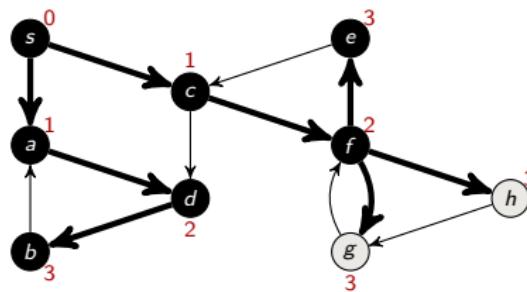
Final notes on BFS

- ▶ BFS may not reach all the vertices
- ▶ We can save the shortest path tree by keeping track of the edge that discovered the vertex



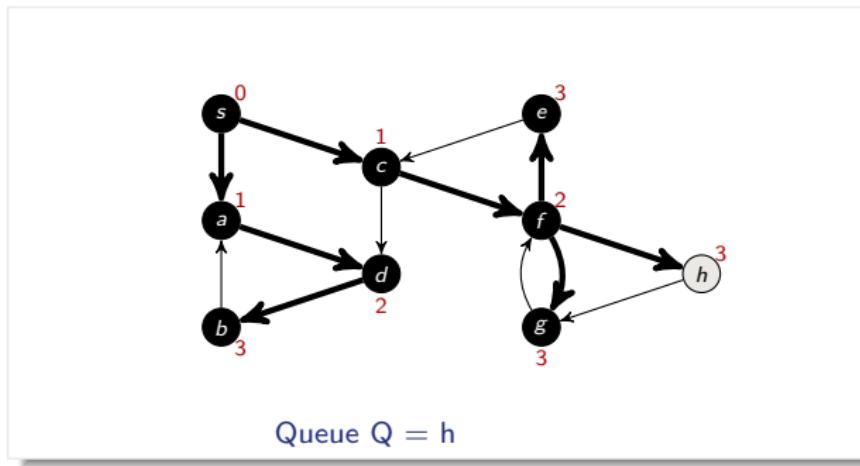
Final notes on BFS

- ▶ BFS may not reach all the vertices
- ▶ We can save the shortest path tree by keeping track of the edge that discovered the vertex



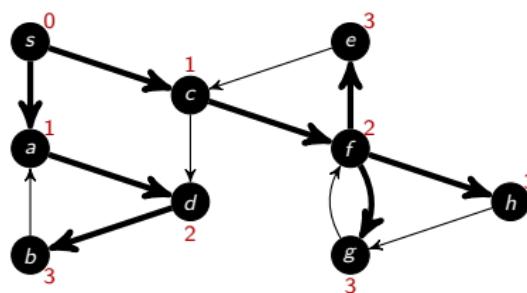
Final notes on BFS

- ▶ BFS may not reach all the vertices
- ▶ We can save the shortest path tree by keeping track of the edge that discovered the vertex



Final notes on BFS

- ▶ BFS may not reach all the vertices
- ▶ We can save the shortest path tree by keeping track of the edge that discovered the vertex



Queue $Q = \text{nil}$

Depth-First Search

Definition

INPUT: Graph $G = (V, E)$, either directed or undirected

OUTPUT: 2 timestamps on each vertex: $v.d = \mathbf{discovery\ time}$ and $v.f = \mathbf{finishing\ time}$

Depth-First Search

Definition

INPUT: Graph $G = (V, E)$, either directed or undirected

OUTPUT: 2 timestamps on each vertex: $v.d = \text{discovery time}$ and $v.f = \text{finishing time}$

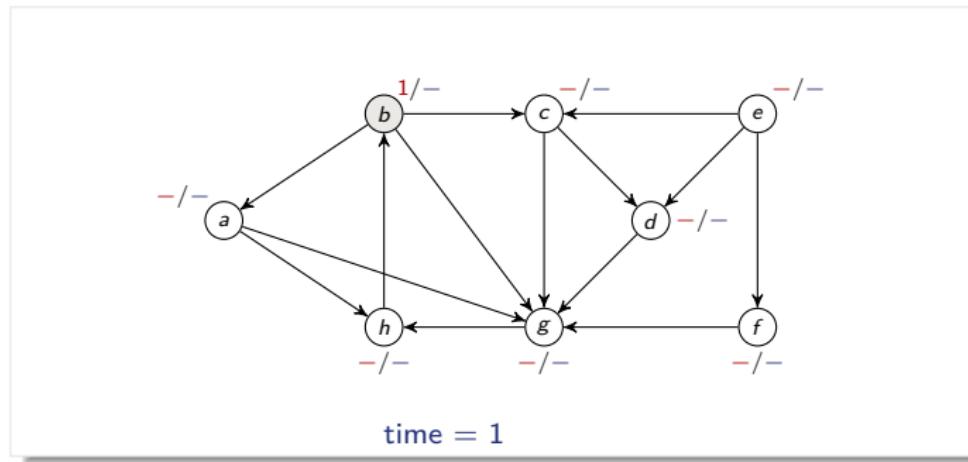
Idea:

- ▶ Methodically explore *every* edge
- ▶ Start over from different vertices as necessary
- ▶ As soon as we discover a vertex explore from it,
 - ▶ Unlike BFS, which explores vertices that are close to a source first

Example of DFS

As DFS progresses, every vertex has a color:

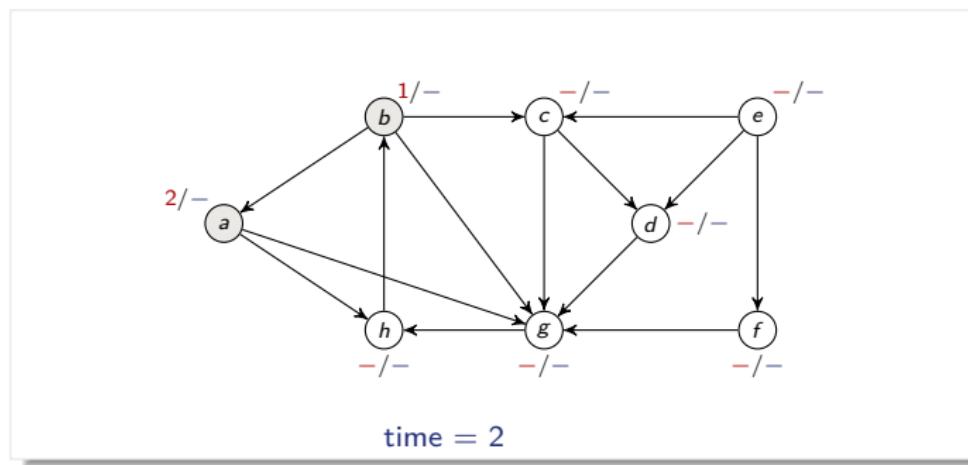
- ▶ WHITE = undiscovered
- ▶ GRAY = discovered, but not finished (not done exploring from it)
- ▶ BLACK = finished (have found everything reachable from it)



Example of DFS

As DFS progresses, every vertex has a color:

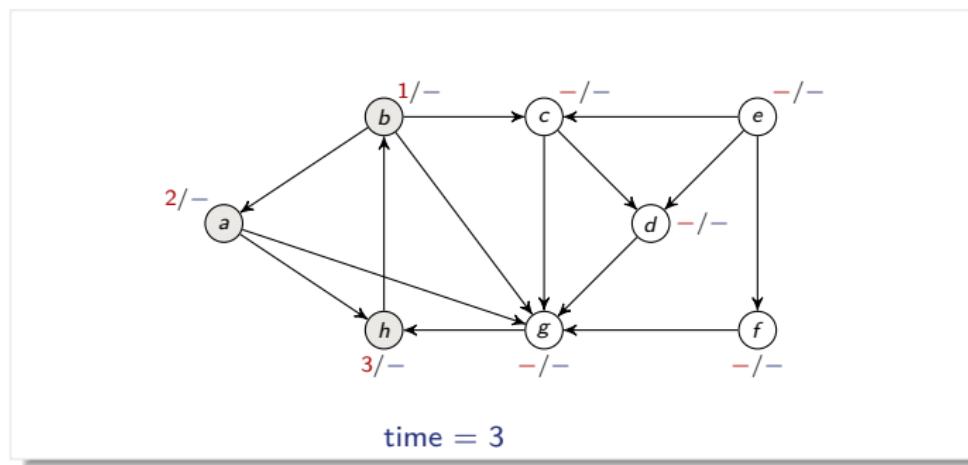
- ▶ WHITE = undiscovered
- ▶ GRAY = discovered, but not finished (not done exploring from it)
- ▶ BLACK = finished (have found everything reachable from it)



Example of DFS

As DFS progresses, every vertex has a color:

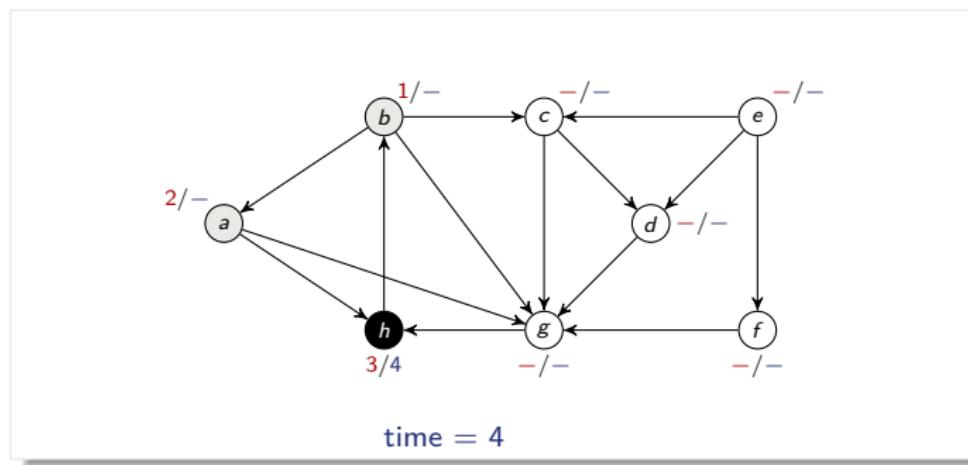
- ▶ WHITE = undiscovered
- ▶ GRAY = discovered, but not finished (not done exploring from it)
- ▶ BLACK = finished (have found everything reachable from it)



Example of DFS

As DFS progresses, every vertex has a color:

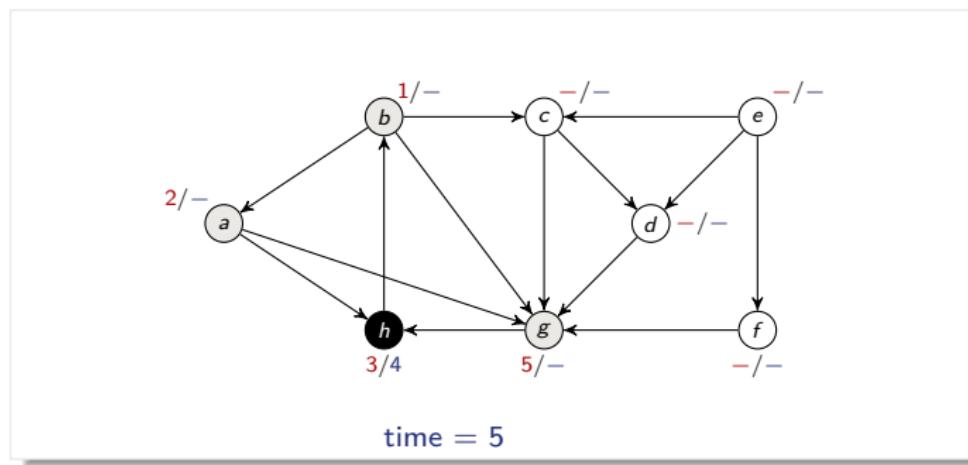
- ▶ WHITE = undiscovered
- ▶ GRAY = discovered, but not finished (not done exploring from it)
- ▶ BLACK = finished (have found everything reachable from it)



Example of DFS

As DFS progresses, every vertex has a color:

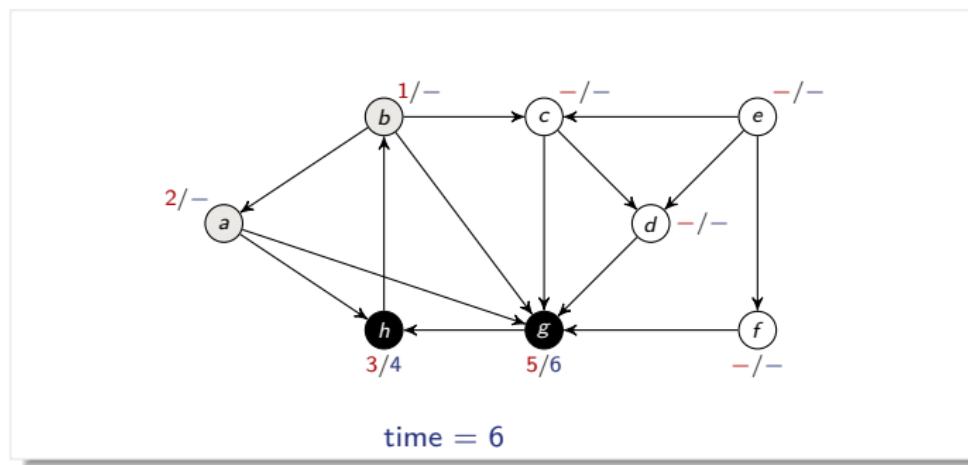
- ▶ WHITE = undiscovered
- ▶ GRAY = discovered, but not finished (not done exploring from it)
- ▶ BLACK = finished (have found everything reachable from it)



Example of DFS

As DFS progresses, every vertex has a color:

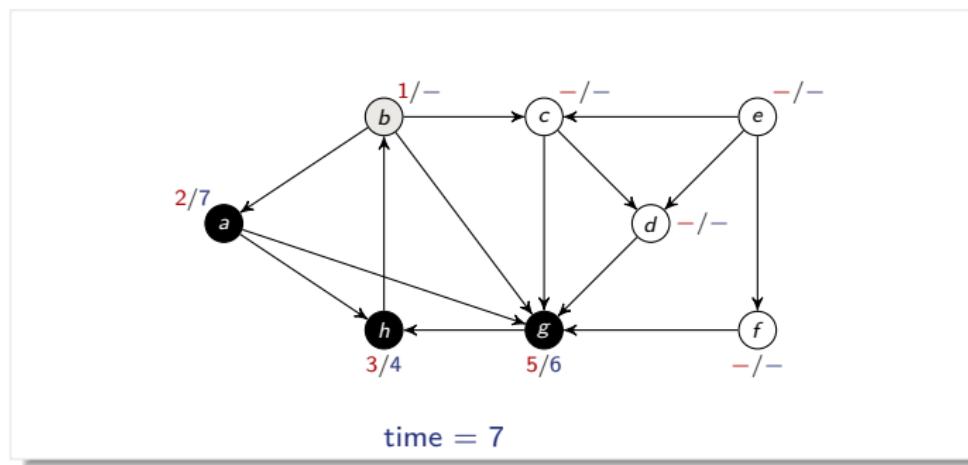
- ▶ WHITE = undiscovered
- ▶ GRAY = discovered, but not finished (not done exploring from it)
- ▶ BLACK = finished (have found everything reachable from it)



Example of DFS

As DFS progresses, every vertex has a color:

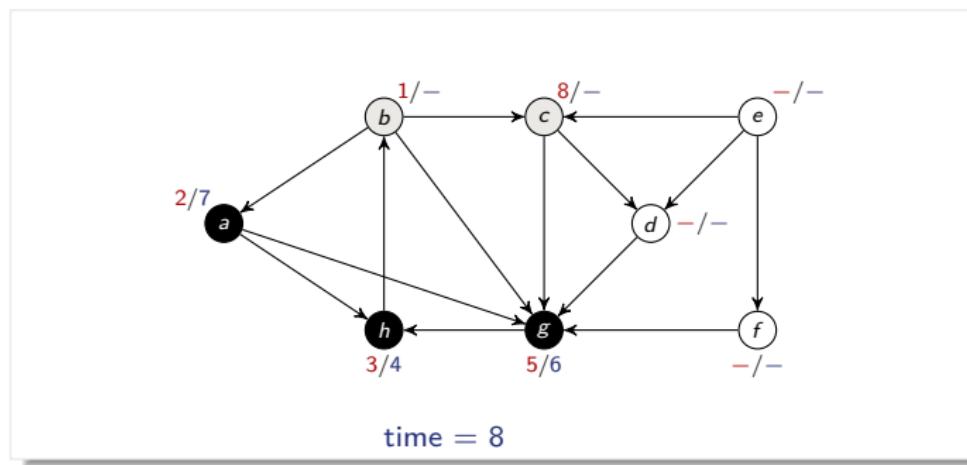
- ▶ WHITE = undiscovered
- ▶ GRAY = discovered, but not finished (not done exploring from it)
- ▶ BLACK = finished (have found everything reachable from it)



Example of DFS

As DFS progresses, every vertex has a color:

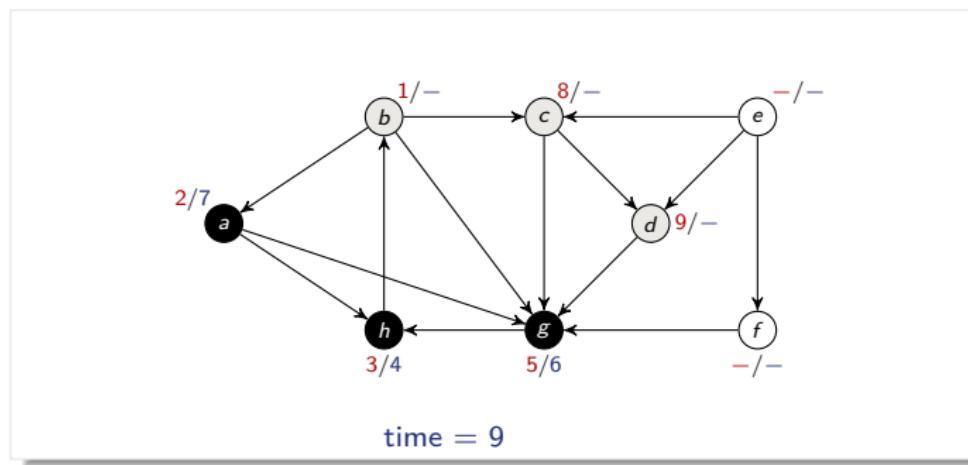
- ▶ WHITE = undiscovered
- ▶ GRAY = discovered, but not finished (not done exploring from it)
- ▶ BLACK = finished (have found everything reachable from it)



Example of DFS

As DFS progresses, every vertex has a color:

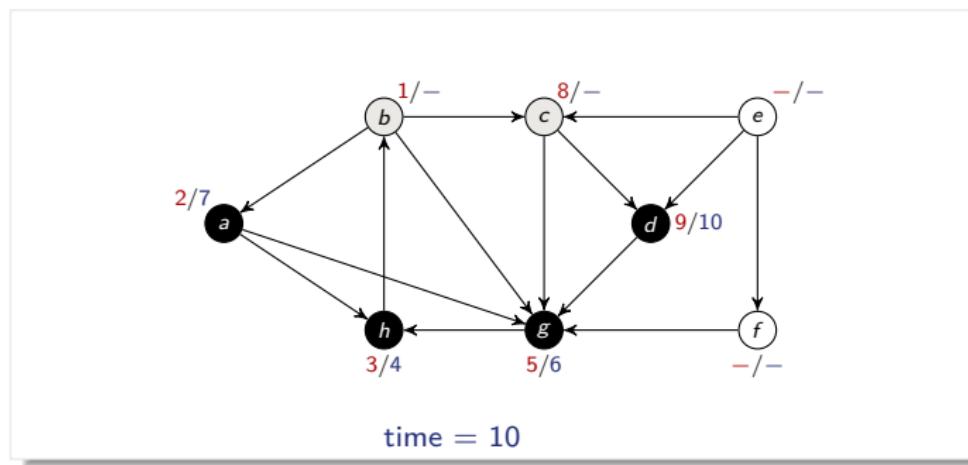
- ▶ WHITE = undiscovered
- ▶ GRAY = discovered, but not finished (not done exploring from it)
- ▶ BLACK = finished (have found everything reachable from it)



Example of DFS

As DFS progresses, every vertex has a color:

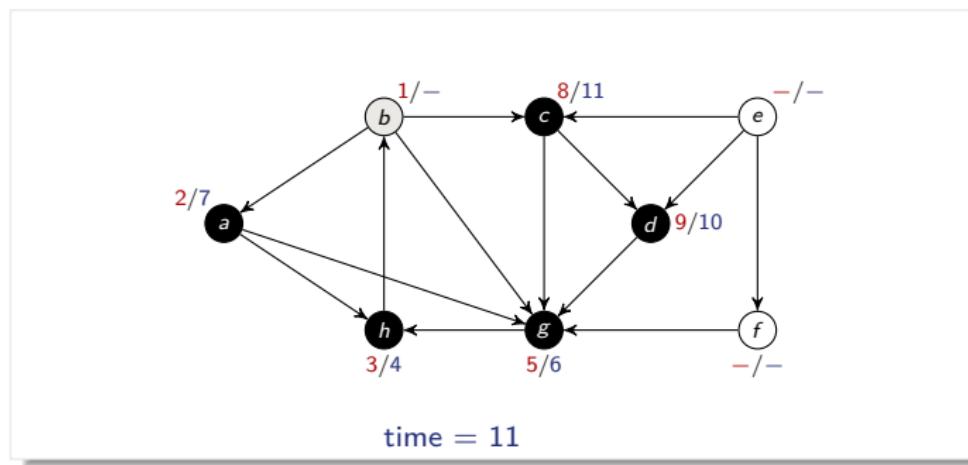
- ▶ WHITE = undiscovered
- ▶ GRAY = discovered, but not finished (not done exploring from it)
- ▶ BLACK = finished (have found everything reachable from it)



Example of DFS

As DFS progresses, every vertex has a color:

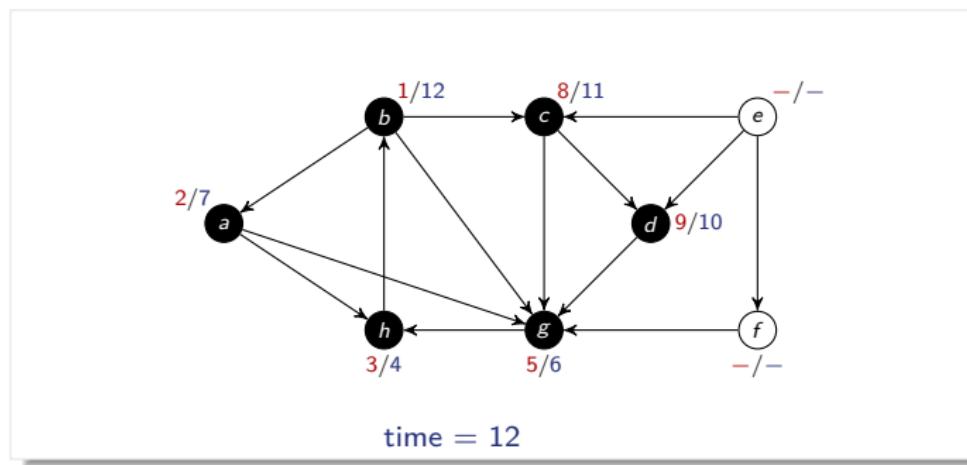
- ▶ WHITE = undiscovered
- ▶ GRAY = discovered, but not finished (not done exploring from it)
- ▶ BLACK = finished (have found everything reachable from it)



Example of DFS

As DFS progresses, every vertex has a color:

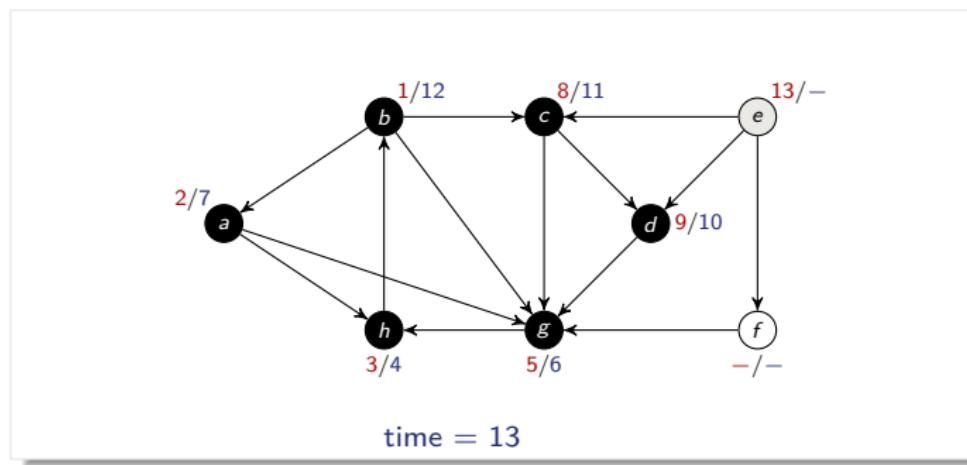
- ▶ WHITE = undiscovered
- ▶ GRAY = discovered, but not finished (not done exploring from it)
- ▶ BLACK = finished (have found everything reachable from it)



Example of DFS

As DFS progresses, every vertex has a color:

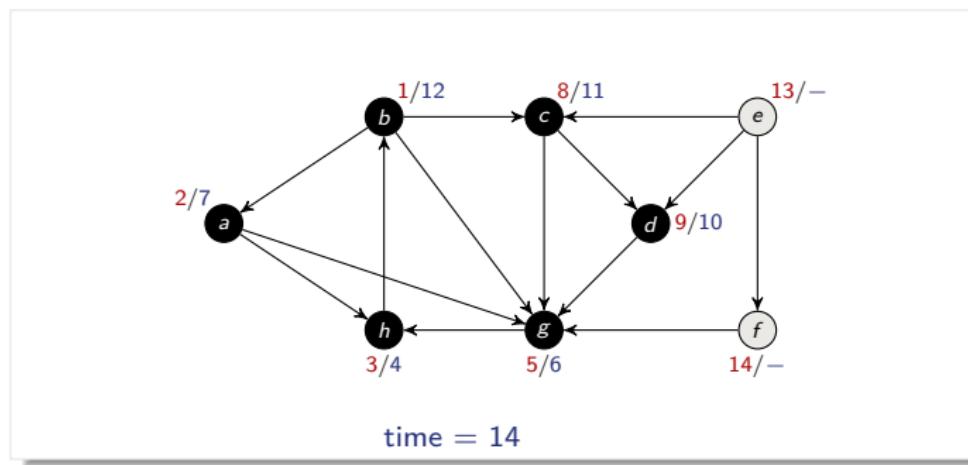
- ▶ WHITE = undiscovered
- ▶ GRAY = discovered, but not finished (not done exploring from it)
- ▶ BLACK = finished (have found everything reachable from it)



Example of DFS

As DFS progresses, every vertex has a color:

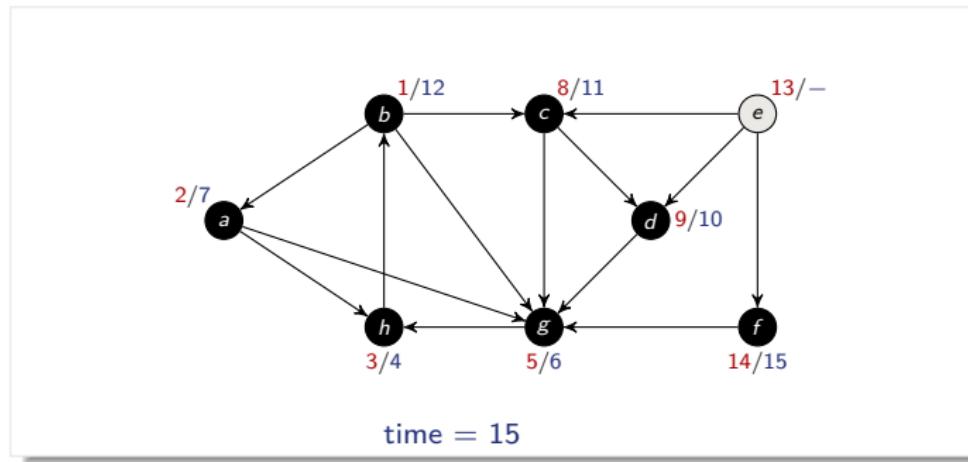
- ▶ WHITE = undiscovered
- ▶ GRAY = discovered, but not finished (not done exploring from it)
- ▶ BLACK = finished (have found everything reachable from it)



Example of DFS

As DFS progresses, every vertex has a color:

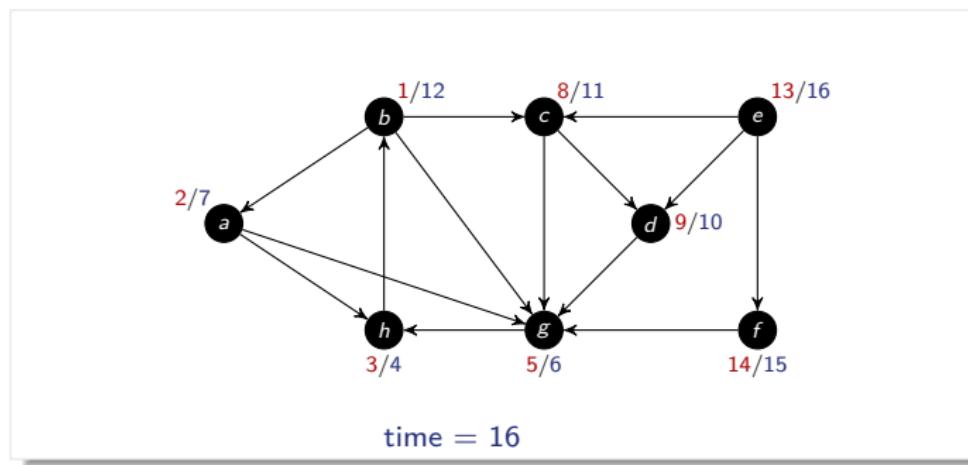
- ▶ WHITE = undiscovered
- ▶ GRAY = discovered, but not finished (not done exploring from it)
- ▶ BLACK = finished (have found everything reachable from it)



Example of DFS

As DFS progresses, every vertex has a color:

- ▶ WHITE = undiscovered
- ▶ GRAY = discovered, but not finished (not done exploring from it)
- ▶ BLACK = finished (have found everything reachable from it)



Pseudocode of DFS

```
DFS( $G$ )
  for each  $u \in G.V$ 
     $u.color = \text{WHITE}$ 
     $time = 0$ 
    for each  $u \in G.V$ 
      if  $u.color == \text{WHITE}$ 
        DFS-VISIT( $G, u$ )
```

```
DFS-VISIT( $G, u$ )
   $time = time + 1$ 
   $u.d = time$ 
   $u.color = \text{GRAY}$ 
  for each  $v \in G.Adj[u]$            // discover  $u$ 
    if  $v.color == \text{WHITE}$ 
      DFS-VISIT( $v$ )
     $v.color = \text{BLACK}$ 
   $time = time + 1$ 
   $u.f = time$                       // finish  $u$ 
```

Pseudocode of DFS

DFS-VISIT(G, u)

$time = time + 1$

$u.d = time$

$u.color = GRAY$

for each $v \in G.Adj[u]$

if $v.color == \text{WHITE}$

DFS-VISIT(v)

$u.color = \text{BLACK}$

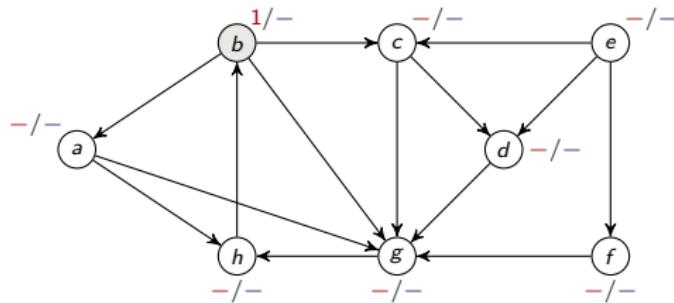
$time = time + 1$

$u.f = time$

// discover u

// explore (u, v)

// finish u



Pseudocode of DFS

DFS-VISIT(G, u)

$time = time + 1$

$u.d = time$

$u.color = GRAY$

for each $v \in G.Adj[u]$

if $v.color == \text{WHITE}$

DFS-VISIT(v)

$u.color = \text{BLACK}$

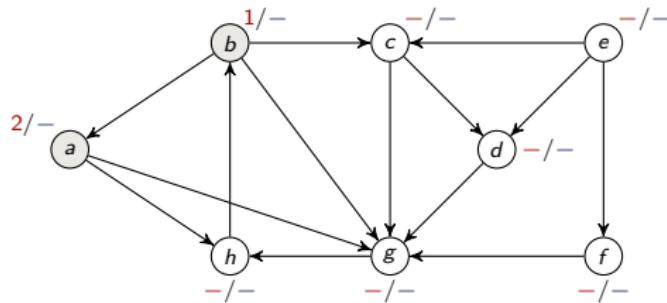
$time = time + 1$

$u.f = time$

// discover u

// explore (u, v)

// finish u



Pseudocode of DFS

DFS-VISIT(G, u)

$time = time + 1$

$u.d = time$

$u.color = GRAY$

for each $v \in G.Adj[u]$

if $v.color == \text{WHITE}$

DFS-VISIT(v)

$u.color = \text{BLACK}$

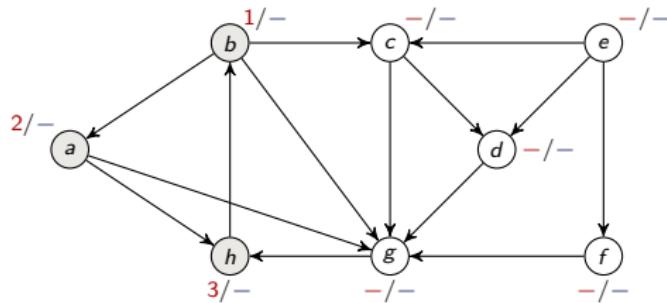
$time = time + 1$

$u.f = time$

// discover u

// explore (u, v)

// finish u



Pseudocode of DFS

DFS-VISIT(G, u)

$time = time + 1$

$u.d = time$

$u.color = GRAY$

for each $v \in G.Adj[u]$

if $v.color == \text{WHITE}$

DFS-VISIT(v)

$u.color = \text{BLACK}$

$time = time + 1$

$u.f = time$

// discover u

// explore (u, v)

// finish u



time = 4

Pseudocode of DFS

DFS-VISIT(G, u)

$time = time + 1$

$u.d = time$

$u.color = GRAY$

for each $v \in G.Adj[u]$

if $v.color == WHITE$

DFS-VISIT(v)

$u.color = BLACK$

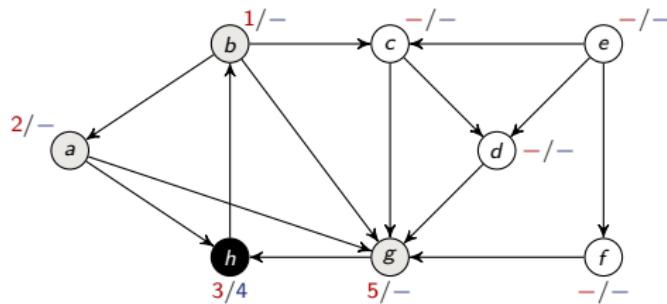
$time = time + 1$

$u.f = time$

// discover u

// explore (u, v)

// finish u



Pseudocode of DFS

DFS-VISIT(G, u)

$time = time + 1$

$u.d = time$

$u.color = GRAY$

for each $v \in G.Adj[u]$

if $v.color == \text{WHITE}$
DFS-VISIT(v)

$u.color = \text{BLACK}$

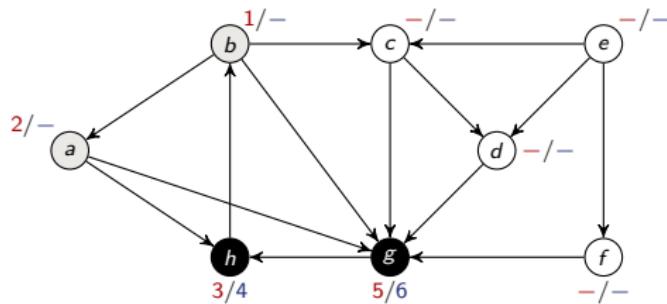
$time = time + 1$

$u.f = time$

// discover u

// explore (u, v)

// finish u



Pseudocode of DFS

DFS-VISIT(G, u)

$time = time + 1$

$u.d = time$

$u.color = GRAY$

for each $v \in G.Adj[u]$

if $v.color == \text{WHITE}$

DFS-VISIT(v)

$u.color = \text{BLACK}$

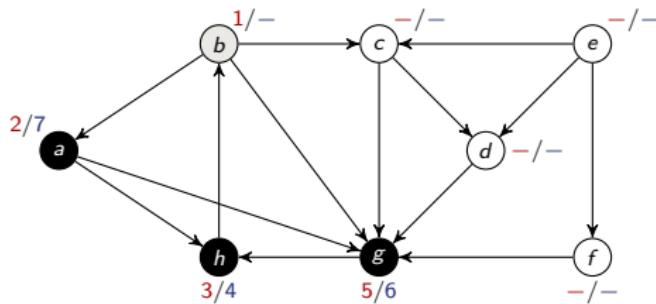
$time = time + 1$

$u.f = time$

// discover u

// explore (u, v)

// finish u



time = 7

Pseudocode of DFS

DFS-VISIT(G, u)

time = *time* + 1

u,d = time

u.color = GRAY

for each $v \in G.Adj[u]$

if $v.color == \text{WHITE}$

DFS-VISIT(v)

u.color = BLACK

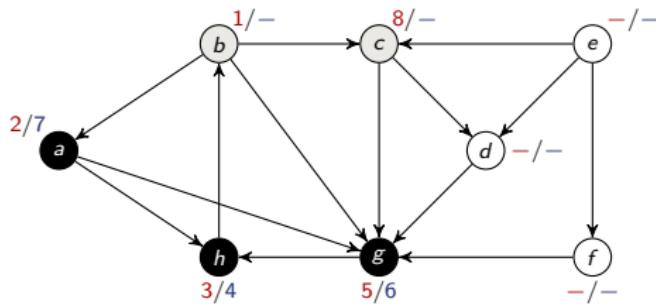
time = *time* + 1

u.f = time

// discover u

// explore (u, v)

// finish *u*



time = 8

Pseudocode of DFS

DFS-VISIT(G, u)

$time = time + 1$

$u.d = time$

$u.color = GRAY$

for each $v \in G.Adj[u]$

if $v.color == \text{WHITE}$
DFS-VISIT(v)

$u.color = \text{BLACK}$

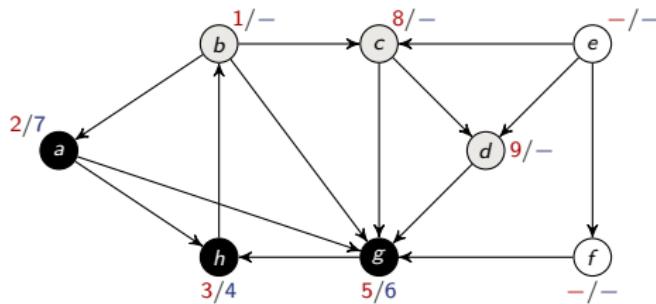
$time = time + 1$

$u.f = time$

// discover u

// explore (u, v)

// finish u



Pseudocode of DFS

DFS-VISIT(G, u)

$time = time + 1$

$u.d = time$

$u.color = GRAY$

for each $v \in G.Adj[u]$

if $v.color == \text{WHITE}$

DFS-VISIT(v)

$u.color = \text{BLACK}$

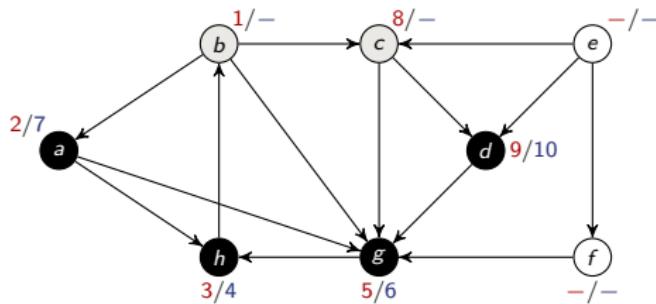
$time = time + 1$

$u.f = time$

// discover u

// explore (u, v)

// finish u



time = 10

Pseudocode of DFS

DFS-VISIT(G, u)

$time = time + 1$

$u.d = time$

$u.color = GRAY$

for each $v \in G.Adj[u]$

if $v.color == \text{WHITE}$

DFS-VISIT(v)

$u.color = \text{BLACK}$

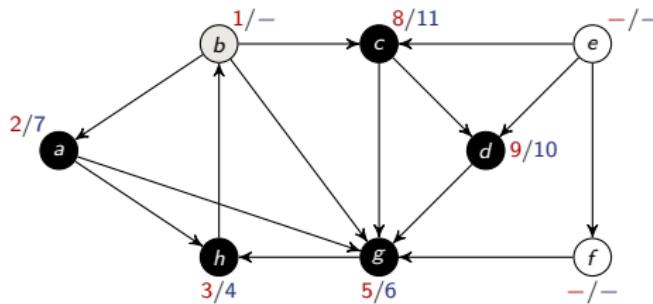
$time = time + 1$

$u.f = time$

// discover u

// explore (u, v)

// finish u



Pseudocode of DFS

DFS-VISIT(G, u)

$time = time + 1$

$u.d = time$

$u.color = GRAY$

for each $v \in G.Adj[u]$

if $v.color == \text{WHITE}$

DFS-VISIT(v)

$u.color = \text{BLACK}$

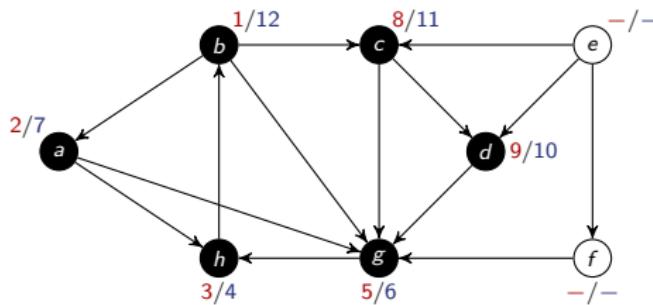
$time = time + 1$

$u.f = time$

// discover u

// explore (u, v)

// finish u



Pseudocode of DFS

DFS-VISIT(G, u)

$time = time + 1$

$u.d = time$

$u.color = GRAY$

for each $v \in G.Adj[u]$

if $v.color == \text{WHITE}$

DFS-VISIT(v)

$u.color = \text{BLACK}$

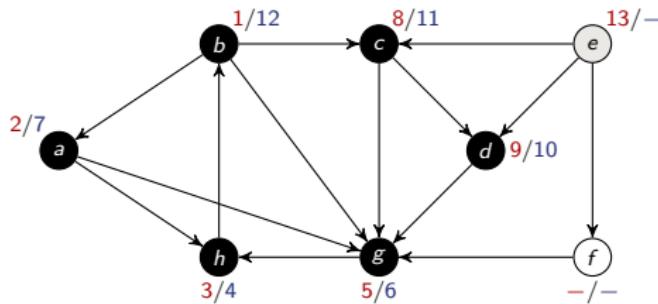
$time = time + 1$

$u.f = time$

// discover u

// explore (u, v)

// finish u



Pseudocode of DFS

DFS-VISIT(G, u)

$time = time + 1$

$u.d = time$

$u.color = GRAY$

for each $v \in G.Adj[u]$

if $v.color == \text{WHITE}$
DFS-VISIT(v)

$u.color = \text{BLACK}$

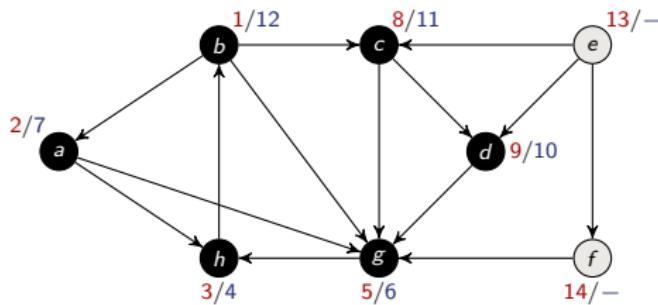
$time = time + 1$

$u.f = time$

// discover u

// explore (u, v)

// finish u



time = 14

Pseudocode of DFS

DFS-VISIT(G, u)

$time = time + 1$

$u.d = time$

$u.color = GRAY$

for each $v \in G.Adj[u]$

if $v.color == \text{WHITE}$

DFS-VISIT(v)

$u.color = \text{BLACK}$

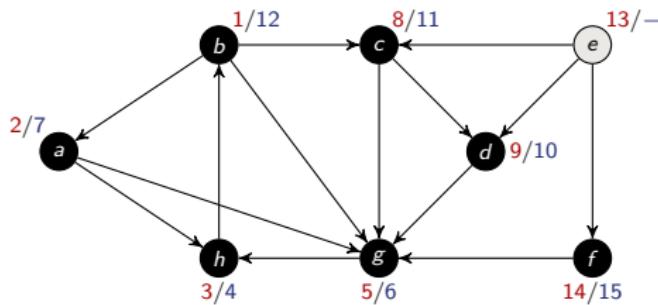
$time = time + 1$

$u.f = time$

// discover u

// explore (u, v)

// finish u



Pseudocode of DFS

DFS-VISIT(G, u)

$time = time + 1$

$u.d = time$

$u.color = GRAY$

for each $v \in G.Adj[u]$

if $v.color == \text{WHITE}$

DFS-VISIT(v)

$u.color = \text{BLACK}$

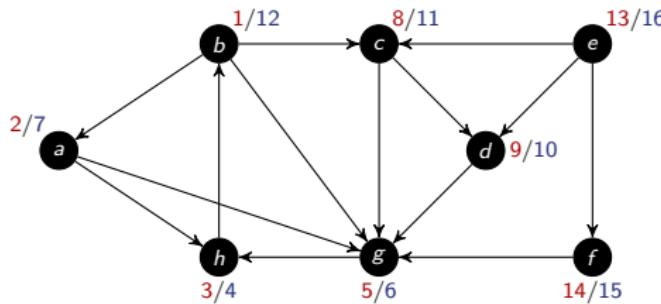
$time = time + 1$

$u.f = time$

// discover u

// explore (u, v)

// finish u



time = 16

Analysis

DFS forms a **depth-first forest** comprised of ≥ 1 **depth-first trees**. Each tree is made of edges (u, v) such that u is gray and v is white when (u, v) is explored.

Analysis

DFS forms a **depth-first forest** comprised of ≥ 1 **depth-first trees**. Each tree is made of edges (u, v) such that u is gray and v is white when (u, v) is explored.

Runtime analysis:

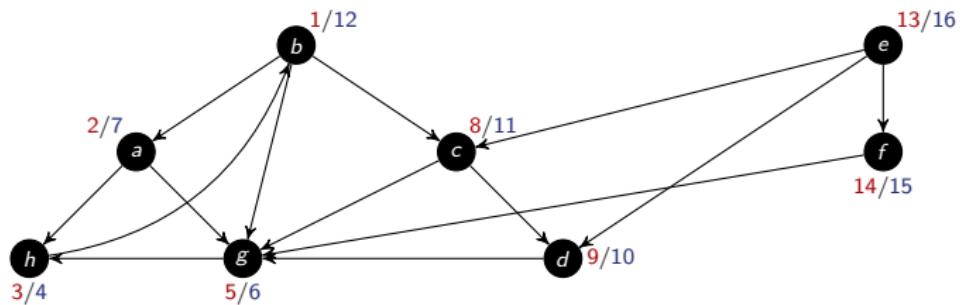
Analysis

DFS forms a **depth-first forest** comprised of ≥ 1 **depth-first trees**. Each tree is made of edges (u, v) such that u is gray and v is white when (u, v) is explored.

Runtime analysis: $\Theta(V + E)$

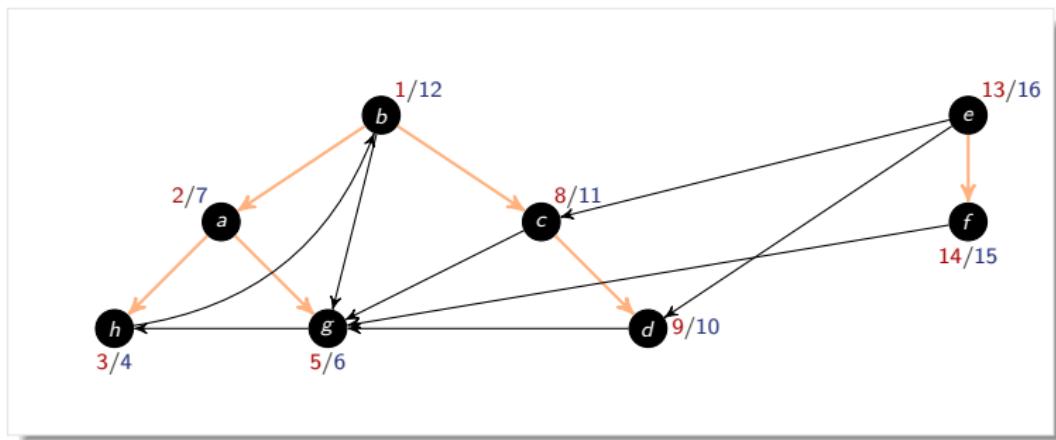
- ▶ $\Theta(V)$ because each vertex is discovered once
- ▶ $\Theta(E)$ because each edge is examined once if directed graph and twice if undirected graph.

Classification of edges



Classification of edges

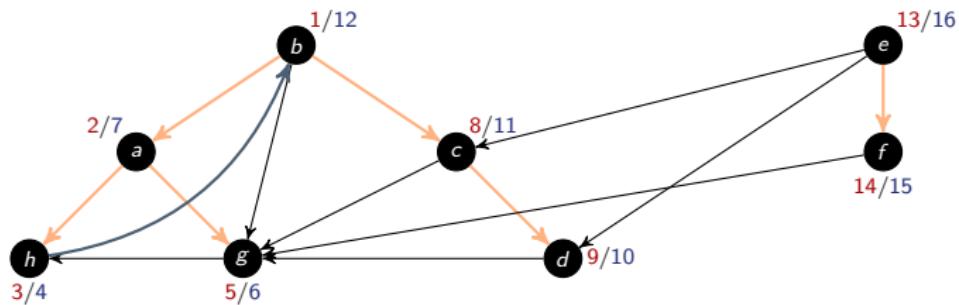
Tree edge: In the depth-first forest, found by exploring (u, v)



Classification of edges

Tree edge: In the depth-first forest, found by exploring (u, v)

Back edge: (u, v) where u is a descendant of v

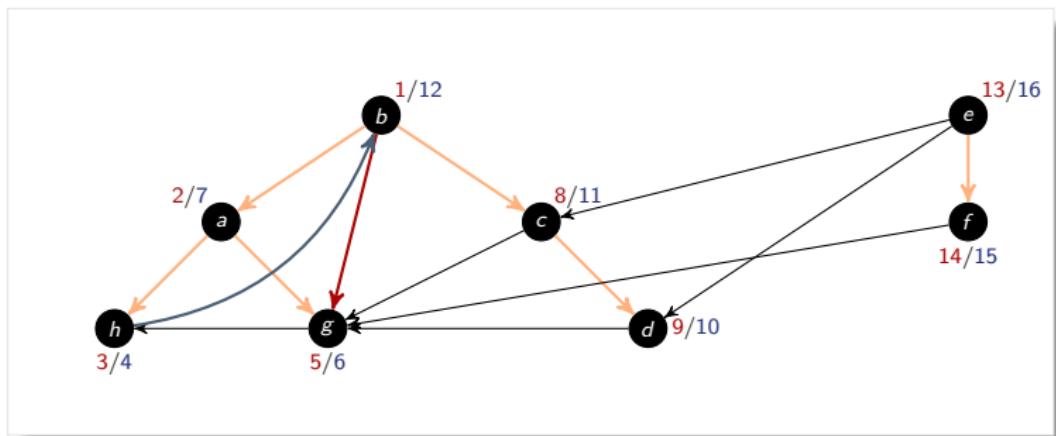


Classification of edges

Tree edge: In the depth-first forest, found by exploring (u, v)

Back edge: (u, v) where u is a descendant of v

Forward edge: (u, v) where v is a descendant of u , but not a tree edge



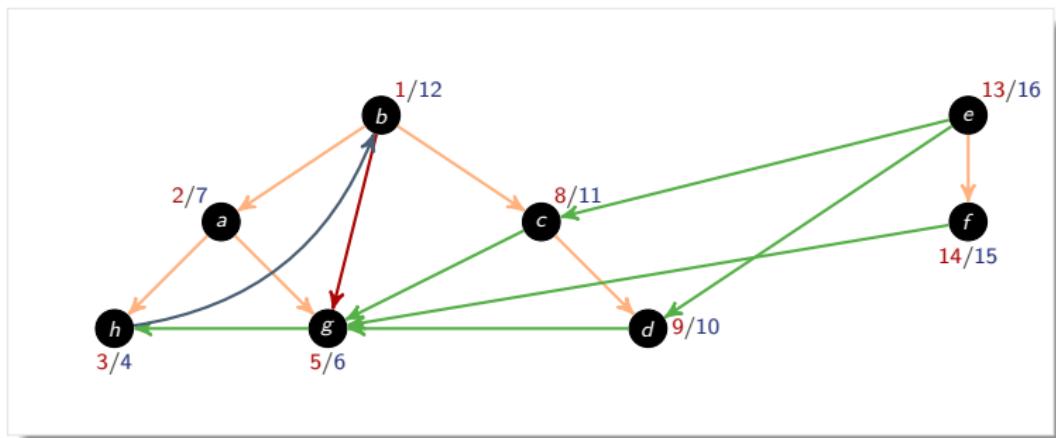
Classification of edges

Tree edge: In the depth-first forest, found by exploring (u, v)

Back edge: (u, v) where u is a descendant of v

Forward edge: (u, v) where v is a descendant of u , but not a tree edge

Cross edge: any other edge



Classification of edges

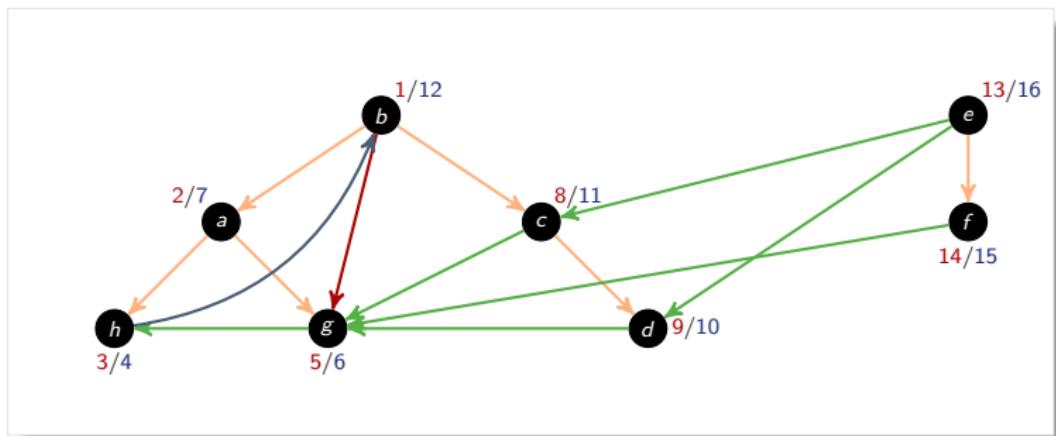
Tree edge: In the depth-first forest, found by exploring (u, v)

Back edge: (u, v) where u is a descendant of v

Forward edge: (u, v) where v is a descendant of u , but not a tree edge

Cross edge: any other edge

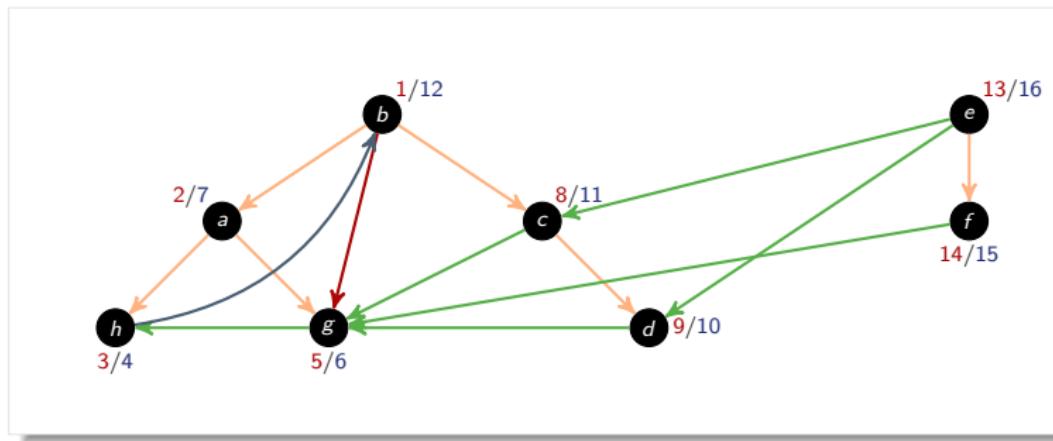
In DFS of an undirected graph we get only tree and back edges, no forward or cross-edges. Why?



Parenthesis theorem

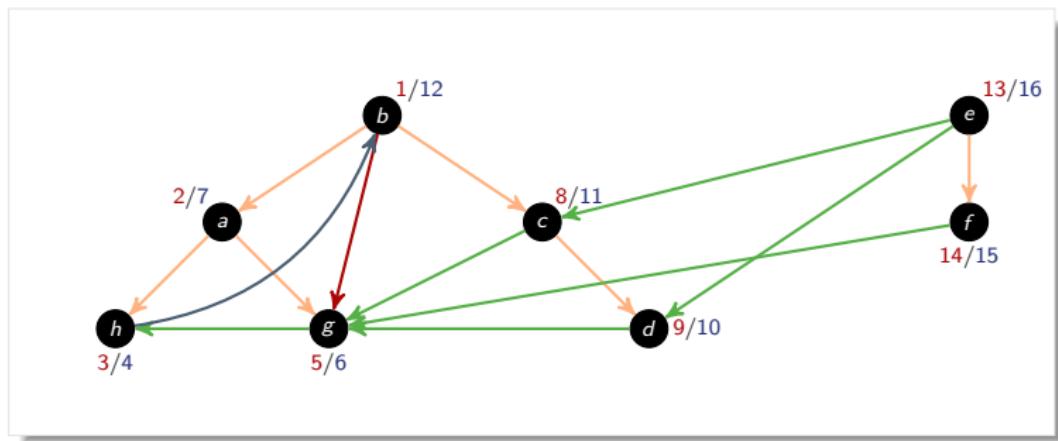
For all u, v exactly one of the following holds

- 1 $u.d < u.f < v.d < v.f$ or $v.d < v.f < u.d < u.f$ and neither of u and v are descendant of each other
- 2 $u.d < v.d < v.f < u.f$ and v is a descendant of u
- 3 $v.d < u.d < u.f < v.f$ and u is a descendant of v .



White-path theorem

Vertex v is a descendant of u if and only if at time $u.d$ there is a path from u to v consisting of only white vertices (except for u , which was just colored gray)



TOPOLOGICAL SORT

Topological sort

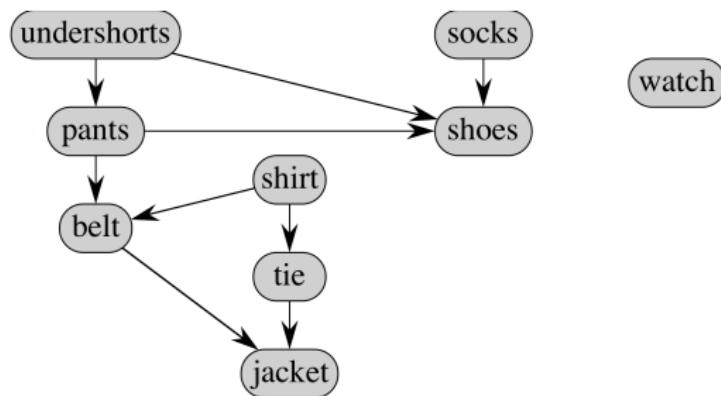
Definition

INPUT: A directed acyclic graph (DAG) $G = (V, E)$

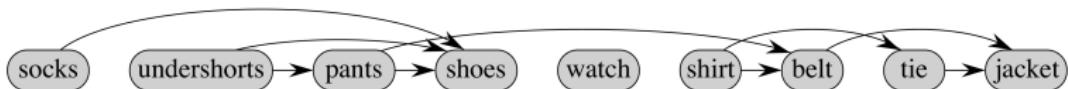
OUTPUT: a linear ordering of vertices such that if $(u, v) \in E$, then u appears somewhere before v

Example

Getting dressed in the morning:



in which order?



When is a directed graph acyclic?

When is a directed graph acyclic?

Lemma

A directed graph G is acyclic if and only if a DFS of G yields no back edges

When is a directed graph acyclic?

Lemma

A directed graph G is acyclic if and only if a DFS of G yields no back edges

Proof. First show that back-edge implies cycle

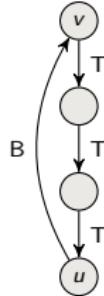
When is a directed graph acyclic?

Lemma

A directed graph G is acyclic if and only if a DFS of G yields no back edges

Proof. First show that back-edge implies cycle

Suppose there is a back edge (u, v) . Then v is ancestor of u in depth-first forest. Therefore there is a path from v to u , which creates a cycle.



When is a directed graph acyclic?

Lemma

A directed graph G is acyclic if and only if a DFS of G yields no back edges

Proof. Second show that cycle implies back-edge

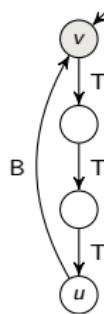
When is a directed graph acyclic?

Lemma

A directed graph G is acyclic if and only if a DFS of G yields no back edges

Proof. Second show that cycle implies back-edge

Let v be the first vertex discovered in the cycle C and let (u, v) be the preceding edge in C . At time $v.d$ vertices in C form a white-path from v to u and hence u is a descendant of v .



Algorithm for topological sort

Algorithm for topological sort

TOPOLOGICAL-SORT(G):

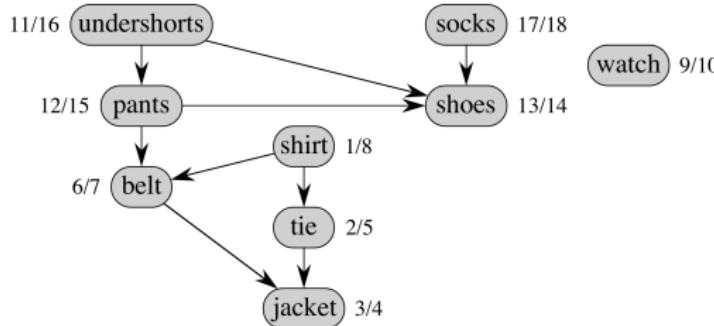
1. Call $DFS(G)$ to compute finishing times $v.f$ for all $v \in G.V$
2. Output vertices in order of *decreasing* finishing times

Algorithm for topological sort

TOPOLOGICAL-SORT(G):

1. Call $DFS(G)$ to compute finishing times $v.f$ for all $v \in G.V$
2. Output vertices in order of *decreasing* finishing times

Example



Time Analysis

TOPOLOGICAL-SORT(G):

1. Call $DFS(G)$ to compute finishing times $v.f$ for all $v \in G.V$
2. Output vertices in order of *decreasing* finishing times

Time Analysis

TOPOLOGICAL-SORT(G):

1. Call $DFS(G)$ to compute finishing times $v.f$ for all $v \in G.V$
2. Output vertices in order of *decreasing* finishing times

Do not need to sort by finishing times

- ▶ Can just output vertices as they are finished and understand that we want the reverse of the list

Time Analysis

TOPOLOGICAL-SORT(G):

1. Call $DFS(G)$ to compute finishing times $v.f$ for all $v \in G.V$
2. Output vertices in order of *decreasing* finishing times

Do not need to sort by finishing times

- ▶ Can just output vertices as they are finished and understand that we want the reverse of the list
- ▶ Or put them onto the front of a linked list as they are finished. When done, the list contains vertices in topologically sorted order.

Time:

Time Analysis

TOPOLOGICAL-SORT(G):

1. Call $DFS(G)$ to compute finishing times $v.f$ for all $v \in G.V$
2. Output vertices in order of *decreasing* finishing times

Do not need to sort by finishing times

- ▶ Can just output vertices as they are finished and understand that we want the reverse of the list
- ▶ Or put them onto the front of a linked list as they are finished. When done, the list contains vertices in topologically sorted order.

Time: $\Theta(V + E)$ (same as DFS)

Correctness

Need to show that if $(u, v) \in E$ then $v.f < u.f$

When we explore (u, v) what are the colors of u and v ?

Correctness

Need to show that if $(u, v) \in E$ then $v.f < u.f$

When we explore (u, v) what are the colors of u and v ?

- ▶ u is gray

Correctness

Need to show that if $(u, v) \in E$ then $v.f < u.f$

When we explore (u, v) what are the colors of u and v ?

- ▶ u is gray
- ▶ Is v gray, too?

Correctness

Need to show that if $(u, v) \in E$ then $v.f < u.f$

When we explore (u, v) what are the colors of u and v ?

- ▶ u is gray
- ▶ Is v gray, too?
 - ▶ No, because then v would be ancestor of u which implies that there is a back edge so the graph is not acyclic (by previous Lemma)

Correctness

Need to show that if $(u, v) \in E$ then $v.f < u.f$

When we explore (u, v) what are the colors of u and v ?

- ▶ u is gray
- ▶ Is v gray, too?
 - ▶ No, because then v would be ancestor of u which implies that there is a back edge so the graph is not acyclic (by previous Lemma)
- ▶ Is v white?
 - ▶ Then becomes descendant of u . By parenthesis theorem,
 $u.d < v.d < v.f < u.f$

Correctness

Need to show that if $(u, v) \in E$ then $v.f < u.f$

When we explore (u, v) what are the colors of u and v ?

- ▶ u is gray
- ▶ Is v gray, too?
 - ▶ No, because then v would be ancestor of u which implies that there is a back edge so the graph is not acyclic (by previous Lemma)
- ▶ Is v white?
 - ▶ Then becomes descendant of u . By parenthesis theorem, $u.d < v.d < v.f < u.f$
- ▶ Is v black?
 - ▶ Then v is already finished. Since we are exploring (u, v) , we have not yet finished u . Therefore, $v.f < u.f$.

Correctness

Need to show that if $(u, v) \in E$ then $v.f < u.f$

When we explore (u, v) what are the colors of u and v ?

- ▶ u is gray
- ▶ Is v gray, too?
 - ▶ No, because then v would be ancestor of u which implies that there is a back edge so the graph is not acyclic (by previous Lemma)
- ▶ Is v white?
 - ▶ Then becomes descendant of u . By parenthesis theorem, $u.d < v.d < v.f < u.f$
- ▶ Is v black?
 - ▶ Then v is already finished. Since we are exploring (u, v) , we have not yet finished u . Therefore, $v.f < u.f$.

Summary

- ▶ Graphs fundamental object to study
- ▶ Representation either by adjacency list or adjacency matrix
- ▶ Two natural ways of traversing a graph: breadth-first search and depth-first search
- ▶ Topological sort of acyclic graphs by applying DFS and then order according to decreasing finishing times